XLM-E: Cross-lingual Language Model Pre-training via ELECTRA

Zewen Chi, Shaohan Huang, Li Dong, Shuming Ma, Bo Zheng, Saksham Singhal, Payal Bajaj, Xia Song, Xian Ling Mao, Heyan Huang, Furu Wei

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

50 Citations (Scopus)

Abstract

In this paper, we introduce ELECTRA-style tasks (Clark et al., 2020b) to cross-lingual language model pre-training. Specifically, we present two pre-training tasks, namely multilingual replaced token detection, and translation replaced token detection. Besides, we pretrain the model, named as XLM-E, on both multilingual and parallel corpora. Our model outperforms the baseline models on various cross-lingual understanding tasks with much less computation cost. Moreover, analysis shows that XLM-E tends to obtain better cross-lingual transferability.

Original languageEnglish
Title of host publicationACL 2022 - 60th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Long Papers)
EditorsSmaranda Muresan, Preslav Nakov, Aline Villavicencio
PublisherAssociation for Computational Linguistics (ACL)
Pages6170-6182
Number of pages13
ISBN (Electronic)9781955917216
Publication statusPublished - 2022
Event60th Annual Meeting of the Association for Computational Linguistics, ACL 2022 - Dublin, Ireland
Duration: 22 May 202227 May 2022

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
Volume1
ISSN (Print)0736-587X

Conference

Conference60th Annual Meeting of the Association for Computational Linguistics, ACL 2022
Country/TerritoryIreland
CityDublin
Period22/05/2227/05/22

Fingerprint

Dive into the research topics of 'XLM-E: Cross-lingual Language Model Pre-training via ELECTRA'. Together they form a unique fingerprint.

Cite this