ET5: A Novel End-to-end Framework for Conversational Machine Reading Comprehension

Xiao Zhang, Heyan Huang*, Zewen Chi, Xian Ling Mao

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

6 Citations (Scopus)

Abstract

Conversational machine reading comprehension (CMRC) aims to assist computers to understand an natural language text and thereafter engage in a multi-turn conversation to answer questions related to the text. Existing methods typically require three steps: (1) decision making based on entailment reasoning; (2) span extraction if required by the above decision; (3) question rephrasing based on the extracted span. However, for nearly all these methods, the span extraction and question rephrasing steps cannot fully exploit the fine-grained entailment reasoning information in decision making step because of their relative independence, which will further enlarge the information gap between decision making and question phrasing. Thus, to tackle this problem, we propose a novel end-to-end framework for conversational machine reading comprehension based on shared parameter mechanism, called entailment reasoning T5 (ET5). Despite the lightweight of our proposed framework, experimental results show that the proposed ET5 achieves new state-of-the-art results on the ShARC leaderboard with the BLEU-4 score of 55.2.

Original languageEnglish
Pages (from-to)570-579
Number of pages10
JournalProceedings - International Conference on Computational Linguistics, COLING
Volume29
Issue number1
Publication statusPublished - 2022
Event29th International Conference on Computational Linguistics, COLING 2022 - Gyeongju, Korea, Republic of
Duration: 12 Oct 202217 Oct 2022

Fingerprint

Dive into the research topics of 'ET5: A Novel End-to-end Framework for Conversational Machine Reading Comprehension'. Together they form a unique fingerprint.

Cite this