Numerical and experimental analysis of biomimetic tubercle for cavitation suppression in viscous oil flow around hydrofoil

Jiahua Zhang, Shiqi Liu, Qingdong Yan, Boo Cheong Khoo, Cheng Liu*, Meng Guo, Wei Wei

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

This study explores the cavitation suppression mechanisms of biomimetic hydrofoils inspired by whale flipper tubercles, focusing on viscous oil flow around hydrofoils. A novel test system for viscous oil cavitation was developed, featuring a high-speed camera to capture transient cavitation phenomena. The study compared the cavitation behaviour of the flow around a basic blade (Base-blade) with that around a biomimetic blade (Bio-blade) designed with leading-edge tubercles. The visualization results demonstrated that the biomimetic structure significantly reduced the degree and unsteadiness of cavitation. The study also employed a three-dimensional CFD model using the Stress-Blended Eddy Simulation (SBES) method and the Zwart-Gerber-Belamri (ZGB) cavitation mass transfer model to reveal the flow mechanism. The Bio-blade reduced the vapour volume fraction by 9.67%, decreased the drag coefficient (Cd) by 9.36%, and minimized the lift fluctuations compared to the Base-blade. The biomimetic design reduces the transient shedding cavitation scale, effectively suppressing severe cavitation events. The Bio-blade inhibited the formation of leading-edge separation vortices and reduced the scale of U-shaped vortices that enhance cavitation evolution. In summary, this study provides a comprehensive analysis of the cavitation suppression mechanisms of biomimetic hydrofoils in high-viscosity fluids, offering valuable insights for future research and engineering applications.

源语言英语
文章编号2394176
期刊Engineering Applications of Computational Fluid Mechanics
18
1
DOI
出版状态已出版 - 2024

指纹

探究 'Numerical and experimental analysis of biomimetic tubercle for cavitation suppression in viscous oil flow around hydrofoil' 的科研主题。它们共同构成独一无二的指纹。

引用此