Abstract
This study explores the cavitation suppression mechanisms of biomimetic hydrofoils inspired by whale flipper tubercles, focusing on viscous oil flow around hydrofoils. A novel test system for viscous oil cavitation was developed, featuring a high-speed camera to capture transient cavitation phenomena. The study compared the cavitation behaviour of the flow around a basic blade (Base-blade) with that around a biomimetic blade (Bio-blade) designed with leading-edge tubercles. The visualization results demonstrated that the biomimetic structure significantly reduced the degree and unsteadiness of cavitation. The study also employed a three-dimensional CFD model using the Stress-Blended Eddy Simulation (SBES) method and the Zwart-Gerber-Belamri (ZGB) cavitation mass transfer model to reveal the flow mechanism. The Bio-blade reduced the vapour volume fraction by 9.67%, decreased the drag coefficient (Cd) by 9.36%, and minimized the lift fluctuations compared to the Base-blade. The biomimetic design reduces the transient shedding cavitation scale, effectively suppressing severe cavitation events. The Bio-blade inhibited the formation of leading-edge separation vortices and reduced the scale of U-shaped vortices that enhance cavitation evolution. In summary, this study provides a comprehensive analysis of the cavitation suppression mechanisms of biomimetic hydrofoils in high-viscosity fluids, offering valuable insights for future research and engineering applications.
Original language | English |
---|---|
Article number | 2394176 |
Journal | Engineering Applications of Computational Fluid Mechanics |
Volume | 18 |
Issue number | 1 |
DOIs | |
Publication status | Published - 2024 |
Keywords
- Cavitation
- SBES
- cavitation–vortex interaction
- hydrofoil
- viscous oil
- whale flipper tubercle