TY - GEN
T1 - Multi-Granular Semantic Mining for Weakly Supervised Semantic Segmentation
AU - Zhang, Meijie
AU - Li, Jianwu
AU - Zhou, Tianfei
N1 - Publisher Copyright:
© 2022 ACM.
PY - 2022/10/10
Y1 - 2022/10/10
N2 - This paper solves the problem of learning image semantic segmentation using image-level supervision. The task is promising in terms of reducing annotation efforts, yet extremely challenging due to the difficulty to directly associate high-level concepts with low-level appearance. While current efforts handle each concept independently, we take a broader perspective to harvest implicit, holistic structures of semantic concepts, which express valuable prior knowledge for accurate concept grounding. This raises multi-granular semantic mining, a new formalism allowing flexible specification of complex relations in the label space. In particular, we propose a heterogeneous graph neural network (Hgnn) to model the heterogeneity of multi-granular semantics within a set of input images. The Hgnn consists of two types of sub-graphs: 1) an external graph characterizes the relations across different images to mine inter-image contexts; and for each image, 2) an internal graph is constructed to mine inter-class semantic dependencies within each individual image. Through heterogeneous graph learning, our Hgnn is able to land a comprehensive understanding of object patterns, leading to more accurate semantic concept grounding. Extensive experimental results show that Hgnn outperforms the current state-of-the-art approaches on the popular PASCAL VOC 2012 and COCO 2014 benchmarks. Our code is available at: https://github.com/maeve07/HGNN.git.
AB - This paper solves the problem of learning image semantic segmentation using image-level supervision. The task is promising in terms of reducing annotation efforts, yet extremely challenging due to the difficulty to directly associate high-level concepts with low-level appearance. While current efforts handle each concept independently, we take a broader perspective to harvest implicit, holistic structures of semantic concepts, which express valuable prior knowledge for accurate concept grounding. This raises multi-granular semantic mining, a new formalism allowing flexible specification of complex relations in the label space. In particular, we propose a heterogeneous graph neural network (Hgnn) to model the heterogeneity of multi-granular semantics within a set of input images. The Hgnn consists of two types of sub-graphs: 1) an external graph characterizes the relations across different images to mine inter-image contexts; and for each image, 2) an internal graph is constructed to mine inter-class semantic dependencies within each individual image. Through heterogeneous graph learning, our Hgnn is able to land a comprehensive understanding of object patterns, leading to more accurate semantic concept grounding. Extensive experimental results show that Hgnn outperforms the current state-of-the-art approaches on the popular PASCAL VOC 2012 and COCO 2014 benchmarks. Our code is available at: https://github.com/maeve07/HGNN.git.
KW - graph neural networks
KW - weakly supervised semantic segmentation
UR - http://www.scopus.com/inward/record.url?scp=85151091560&partnerID=8YFLogxK
U2 - 10.1145/3503161.3547919
DO - 10.1145/3503161.3547919
M3 - Conference contribution
AN - SCOPUS:85151091560
T3 - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
SP - 6019
EP - 6028
BT - MM 2022 - Proceedings of the 30th ACM International Conference on Multimedia
PB - Association for Computing Machinery, Inc
T2 - 30th ACM International Conference on Multimedia, MM 2022
Y2 - 10 October 2022 through 14 October 2022
ER -