摘要
Let M13(c) be an 3-dimensional Lorentz space form and C(M13(c)) denote the conformal transformation group of M13(c). A spacelike surface x:M2→M13(c) is called a conformal homogeneous spacelike surface. If there exists a subgroup G⊂C(M13(c)) such that the orbit G(p)=x(M2),p∈x(M2). In this paper, we classify completely conformal homogeneous spacelike surfaces up to a conformal transformation of M13(c).
源语言 | 英语 |
---|---|
文章编号 | 101667 |
期刊 | Differential Geometry and its Application |
卷 | 73 |
DOI | |
出版状态 | 已出版 - 12月 2020 |
指纹
探究 'Conformal homogeneous spacelike surfaces in 3-dimensional Lorentz space forms' 的科研主题。它们共同构成独一无二的指纹。引用此
Ji, X., & Li, T. (2020). Conformal homogeneous spacelike surfaces in 3-dimensional Lorentz space forms. Differential Geometry and its Application, 73, 文章 101667. https://doi.org/10.1016/j.difgeo.2020.101667