李同柱 职称:教授 电子邮箱:litz@bit.edu.cn
本人的研究兴趣在子流形几何(主要子流形的Lie球几何,子流形的Moebius几何,子流形的Laguerre几何和常曲率空间中子流形的等距群几何)和黎曼流形的大范围几何。主持国家自然科学基金4项,参与国家自然科学基金4项,参与科技部重点研发项目一项。在国内外数学专业期刊发表学术论文40多篇。获教育部2014年度高等学校科学研究优秀成果奖(自然类)一等奖一项。
更多
子流形几何和大范围黎曼流形几何与拓扑。
2005年北京大学数学科学学院 博士
2005/06—2007/06,北京理工大学数学系,讲师,
2007/07—2009/06,首都师范大学数学系,博士后。
2009/06---2012/06,北京理工大学数学系,讲师,
2012/07---2014/01,北京理工大学数学系,副教授,
2014/02—2015/02,加州大学圣克鲁茨分校数学系,访问研究员,
2015/03---2018/06,北京理工大学数学系,副教授,
2018/07—至今,北京理工大学数学系,教授。
[42] ,姬秀; 李同柱,Lorentz空间中的Para-isotropic超曲面. (Chinese) 数学学报(中文版) 64 (2021), no. 1, 47–58.
[41],Xie, Zhenxiao; Li, Tongzhu; Ma, Xiang; Wang, Changping ,Wintgen ideal submanifolds: new examples, frame sequence and Möbius homogeneous classification.
Adv. Math. 381 (2021), Paper No. 107620, 31 pp.
[40], Ji, Xiu; Li, Tongzhu ,Conformal homogeneous spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms.
Houston J. Math. 46 (2020), no. 4, 935–951.
[39], Chen, Ya Yun; Ji, Xiu; Li, Tong Zhu, Möbius homogeneous hypersurfaces with one simple principal curvature in Sn+1.
Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 9,
[38], Ji, Xiu; Li, Tongzhu ,Conformal homogeneous spacelike surfaces in 3-dimensional Lorentz space forms.
Differential Geom. Appl. 73 (2020), 101667, 16 pp.
[37], Deng, Zonggang; Li, Tongzhu, Conformally flat Willmore spacelike hypersurfaces in Rn+11.
Turkish J. Math. 44 (2020), no. 1, 252–273.
[36], Lin, Limiao; Li, Tongzhu ,A Möbius rigidity of compact Willmore hypersurfaces in Sn+1.
J. Math. Anal. Appl. 484 (2020), no. 1, 123707, 15 pp.
[35], Ji, Xiu; Li, Tongzhu; Sun, Huafei ,Para-Blaschke isoparametric spacelike hypersurfaces in Lorentzian space forms.
Houston J. Math. 45 (2019), no. 3, 685–706.
[34], Ji, Xiu; Li, Tongzhu; Sun, Huafei, Spacelike hypersurfaces with constant conformal sectional curvature in Rn+11.
Pacific J. Math. 300 (2019), no. 1, 17–37.
[33], Ji, Xiu; Li, TongZhu , A note on compact Móbius homogeneous submanifolds in Sn+1.
Bull. Korean Math. Soc. 56 (2019), no. 3,
[32],陈芝红;李同柱 , 空间形式中紧超曲面的刚性,数学进展,47 (2018), no. 5, 773–778.
[31], Lin, Limiao; Li, Tongzhu; Wang, Changping ,A Möbius scalar curvature rigidity on compact conformally flat hypersurfaces in Sn+1.
J. Math. Anal. Appl. 466 (2018), no. 1, 762–775
[30], Li, Tongzhu; Nie, Changxiong ,Spacelike Dupin hypersurfaces in Lorentzian space forms.
J. Math. Soc. Japan 70 (2018), no. 2, 463–480.
[29], Xie, Zhenxiao; Li, Tongzhu; Ma, Xiang; Wang, Changping ,Wintgen ideal submanifolds: reduction theorems and a coarse classification.
Ann. Global Anal. Geom. 53 (2018), no. 3, 377–403.
[28], Li, Tongzhu, Möbius homogeneous hypersurfaces with three distinct principal curvatures in Sn+1.
Chinese Ann. Math. Ser. B 38 (2017), no. 5, 1131–1144.
[27], Li, Tongzhu; Qing, Jie; Wang, Changping ,Möbius curvature, Laguerre curvature and Dupin hypersurface.
Adv. Math. 311 (2017), 249–294.
[26], Li, Tongzhu; Ma, Xiang; Wang, Changping; Xie, Zhenxiao, Wintgen ideal submanifolds of codimension two, complex curves, and Möbius geometry.
Tohoku Math. J. (2) 68 (2016), no. 4, 621–638.
[25], Guo, Zhen; Li, Tongzhu; Wang, Changping, Classification of hypersurfaces with constant Möbius Ricci curvature in Rn+1.
Tohoku Math. J. (2) 67 (2015), no. 3, 383–403.
[24], Li, Tongzhu; Ma, Xiang; Wang, Changping ,Wintgen ideal submanifolds with a low-dimensional integrable distribution.
Front. Math. China 10 (2015), no. 1, 111–136.
[23], 李同柱; 聂昌雄, 四维球面空间中共形高斯映射调和 的超曲面,数学学报, 57 (2014), no. 6, 1231–1240.
[22], Li, Tongzhu; Wang, Changping ,Classification of Möbius homogeneous hypersurfaces in a 5-dimensional sphere.
Houston J. Math. 40 (2014), no. 4, 1127–1146.
[21], Li, Tongzhu; Wang, Changping ,A note on Blaschke isoparametric hypersurfaces.
Internat. J. Math. 25 (2014), no. 12, 1450117, 9 pp.
[20], Xie, ZhenXiao; Li, TongZhu; Ma, Xiang; Wang, ChangPing, Möbius geometry of three-dimensional Wintgen ideal submanifolds in S5.
Sci. China Math. 57 (2014), no. 6, 1203–1220.
[19], Li, Tongzhu; Ma, Xiang; Wang, Changping, Deformation of hypersurfaces preserving the Möbius metric and a reduction theorem.
Adv. Math. 256 (2014), 156–205.
[18], Li, Tongzhu, Compact Willmore hypersurfaces with two distinct principal curvatures in Sn+1.
Differential Geom. Appl. 32 (2014), 35–45.
[17], Li, Tongzhu; Ma, Xiang; Wang, Changping, Willmore hypersurfaces with constant Möbius curvature in Rn+1.
Geom. Dedicata 166 (2013), 251–267.
[16], Li, Tongzhu; Ma, Xiang; Wang, Changping, Möbius homogeneous hypersurfaces with two distinct principal curvatures in Sn+1.
Ark. Mat. 51 (2013), no. 2, 315–328.
[15], Li, Tongzhu ,Willmore hypersurfaces with two distinct principal curvatures in Rn+1.
Pacific J. Math. 256 (2012), no. 1, 129–149.
[14], Li, TongZhu, Laguerre homogeneous surfaces in R3.
Sci. China Math. 55 (2012), no. 6, 1197–1214.
[13], Guo, Zhen; Li, Tongzhu; Lin, Limiao; Ma, Xiang; Wang, Changping, Classification of hypersurfaces with constant Möbius curvature in Sm+1.
Math. Z. 271 (2012), no. 1-2, 193–219.
[12], Li, Tong Zhu; Sun, Hua Fei, Laguerre isoparametric hypersurfaces in R4.
Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 6, 1179–1186.
[11], Li, TongZhu; Li, HaiZhong; Wang, ChangPing, Classification of hypersurfaces with constant Laguerre eigenvalues in Rn.
Sci. China Math. 54 (2011), no. 6, 1129–1144.
[10], Li, Tongzhu, Homogeneous surfaces in Lie sphere geometry.
Geom. Dedicata 149 (2010), 15–43.
[9], Nie, ChangXiong; Li, TongZhu; He, YiJun; Wu, ChuanXi, Conformal isoparametric hypersurfaces with two distinct conformal principal curvatures in conformal space.
Sci. China Math. 53 (2010), no. 4, 953–965.
[8], Li, Tongzhu; Li, Haizhong; Wang, Changping ,Classification of hypersurfaces with parallel Laguerre second fundamental form in Rn.
Differential Geom. Appl. 28 (2010), no. 2,
[7], 李同柱; 孙华飞, 球面中具有调和曲率的超曲面. 数学进展 37 (2008), no. 1, 57–66.
[6], Li, Tongzhu; Peng, Linyu; Sun, Huafei, The geometric structure of the inverse gamma distribution.
Beiträge Algebra Geom. 49 (2008), no. 1, 217–225.
[5], Li, Tongzhu; Wang, Changping, Laguerre geometry of hypersurfaces in Rn.
Manuscripta Math. 122 (2007), no. 1, 73–95.
[4], Li, Tong Zhu ,Laguerre geometry of surfaces in R3.
Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1525–1534.
[3], Li Tongzhu, Nie Changxiong, Conformal geometry of hypersurfaces in Lorentz space forms,
Geometry, 2013, Vol.2013, Article ID 549602.
[2], Li Tongzhu, Demeter Krupka, The Geometry of Tangent Bundles: Canonical Vector Fields,
Geometry, 2013, Vol.2013, Article ID 364301.
[1] 李同柱,郭震, 常曲率流形中具平行李奇曲率的超曲面,
数学学报,2004, 47 ,587—592.