摘要
Let M(Sn+1) denote the Möbius transformation group of the (n+1)-dimensional sphere Sn+1. A hypersurface x:Mn→Sn+1 is called a Möbius homogeneous hypersurface if there exists a subgroup G of M(Sn+1) such that the orbit G⋅p=x(Mn),p∈x(Mn). In this paper, the Möbius homogeneous hypersurfaces are classified completely up to a Möbius transformation of Sn+1.
源语言 | 英语 |
---|---|
文章编号 | 109722 |
期刊 | Advances in Mathematics |
卷 | 448 |
DOI | |
出版状态 | 已出版 - 6月 2024 |
指纹
探究 'Möbius homogeneous hypersurfaces in Sn+1' 的科研主题。它们共同构成独一无二的指纹。引用此
Li, T., Ma, X., Wang, C., & Wang, P. (2024). Möbius homogeneous hypersurfaces in Sn+1. Advances in Mathematics, 448, 文章 109722. https://doi.org/10.1016/j.aim.2024.109722