TY - JOUR
T1 - Conformal homogeneous spacelike surfaces in 3-dimensional Lorentz space forms
AU - Ji, Xiu
AU - Li, Tongzhu
N1 - Publisher Copyright:
© 2020 Elsevier B.V.
PY - 2020/12
Y1 - 2020/12
N2 - Let M13(c) be an 3-dimensional Lorentz space form and C(M13(c)) denote the conformal transformation group of M13(c). A spacelike surface x:M2→M13(c) is called a conformal homogeneous spacelike surface. If there exists a subgroup G⊂C(M13(c)) such that the orbit G(p)=x(M2),p∈x(M2). In this paper, we classify completely conformal homogeneous spacelike surfaces up to a conformal transformation of M13(c).
AB - Let M13(c) be an 3-dimensional Lorentz space form and C(M13(c)) denote the conformal transformation group of M13(c). A spacelike surface x:M2→M13(c) is called a conformal homogeneous spacelike surface. If there exists a subgroup G⊂C(M13(c)) such that the orbit G(p)=x(M2),p∈x(M2). In this paper, we classify completely conformal homogeneous spacelike surfaces up to a conformal transformation of M13(c).
KW - Conformal homogeneous spacelike surface conformal transformation group
KW - Conformal invariants
KW - Homogeneous spacelike surface
UR - http://www.scopus.com/inward/record.url?scp=85089494163&partnerID=8YFLogxK
U2 - 10.1016/j.difgeo.2020.101667
DO - 10.1016/j.difgeo.2020.101667
M3 - Article
AN - SCOPUS:85089494163
SN - 0926-2245
VL - 73
JO - Differential Geometry and its Application
JF - Differential Geometry and its Application
M1 - 101667
ER -