Abstract
Most literature on the mechanical properties of Lithium-ion battery cells is concerned with the mechanical behavior of jellyroll or Lithium-ion battery when the state of charge (SOC) is 0%. Recent evidence shows that the mechanical properties of Lithium-ion batteries change as the SOC value changes. In this paper, several quasi-static mechanical tests on 18650 battery cells with various SOC values are performed to reveal the SOC-dependent mechanical and electrochemical failure behavior of Lithium-ion batteries. The SOC-dependent constitutive model of the jellyroll is proposed. Experimental results indicate that the ability of Lithium-ion batteries to resist deformation increase as the SOC value increases. An increase in the SOC value may facilitate thermal runaway after an internal short circuit. An explicit finite-element model of a Lithium-ion battery is established to validate the proposed approach. The simulation results of various loading cases are in good agreement with the corresponding experimental results. The established SOC-dependent finite-element model of a Lithium-ion battery may be beneficial to produce accurate simulations of an entire battery pack during operation.
Original language | English |
---|---|
Pages (from-to) | 26358-26366 |
Number of pages | 9 |
Journal | IEEE Access |
Volume | 6 |
DOIs | |
Publication status | Published - 10 Apr 2018 |
Keywords
- Lithium-ion battery
- SOC dependency
- finite-element model
- thermal runaway