TY - GEN
T1 - Self-supervised Bilingual Syntactic Alignment for Neural Machine Translation
AU - Zhang, Tianfu
AU - Huang, Heyan
AU - Feng, Chong
AU - Cao, Longbing
N1 - Publisher Copyright:
Copyright © 2021, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2021
Y1 - 2021
N2 - While various neural machine translation (NMT) methods have integrated mono-lingual syntax knowledge into the linguistic representation of sequence-to-sequence, no research is available on aligning the syntactic structures of target language with the corresponding source language syntactic structures. This work shows the first attempt of a sourcetarget bilingual syntactic alignment approach SyntAligner by mutual information maximization-based self-supervised neural deep modeling. Building on the word alignment for NMT, our SyntAligner firstly aligns the syntactic structures of source and target sentences and then maximizes their mutual dependency by introducing a lower bound on their mutual information. In SyntAligner, the syntactic structure of span granularity is represented by transforming source or target word hidden state into a source or target syntactic span vector. A border-sensitive span attention mechanism then captures the correlation between the source and target syntactic span vectors, which also captures the self-attention between span border-words as alignment bias. Lastly, a self-supervised bilingual syntactic mutual information maximization-based learning objective dynamically samples the aligned syntactic spans to maximize their mutual dependency. Experiment results on three typical NMT tasks: WMT'14 English!German, IWSLT'14 German!English, and NC'11 English!French show the SyntAligner effectiveness and universality of syntactic alignment.
AB - While various neural machine translation (NMT) methods have integrated mono-lingual syntax knowledge into the linguistic representation of sequence-to-sequence, no research is available on aligning the syntactic structures of target language with the corresponding source language syntactic structures. This work shows the first attempt of a sourcetarget bilingual syntactic alignment approach SyntAligner by mutual information maximization-based self-supervised neural deep modeling. Building on the word alignment for NMT, our SyntAligner firstly aligns the syntactic structures of source and target sentences and then maximizes their mutual dependency by introducing a lower bound on their mutual information. In SyntAligner, the syntactic structure of span granularity is represented by transforming source or target word hidden state into a source or target syntactic span vector. A border-sensitive span attention mechanism then captures the correlation between the source and target syntactic span vectors, which also captures the self-attention between span border-words as alignment bias. Lastly, a self-supervised bilingual syntactic mutual information maximization-based learning objective dynamically samples the aligned syntactic spans to maximize their mutual dependency. Experiment results on three typical NMT tasks: WMT'14 English!German, IWSLT'14 German!English, and NC'11 English!French show the SyntAligner effectiveness and universality of syntactic alignment.
UR - http://www.scopus.com/inward/record.url?scp=85122739518&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85122739518
T3 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
SP - 14454
EP - 14462
BT - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
PB - Association for the Advancement of Artificial Intelligence
T2 - 35th AAAI Conference on Artificial Intelligence, AAAI 2021
Y2 - 2 February 2021 through 9 February 2021
ER -