Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression

Yue Xiang, Dixin Luo, Hongteng Xu*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Real-world graphs like social networks are often evolutionary over time, whose observations at different timestamps lead to graph sequences. Modeling such evolutionary graphs is important for many applications, but solving this problem often requires the correspondence between the graphs at different timestamps, which may leak private node information, e.g., the temporal behavior patterns of the nodes. We proposed a Gromov-Wasserstein Autoregressive (GWAR) model to capture the generative mechanisms of evolutionary graphs, which does not require the correspondence information and thus preserves the privacy of the graphs’ nodes. This model consists of two autoregressions, predicting the number of nodes and the probabilities of nodes and edges, respectively. The model takes observed graphs as its input and predicts future graphs via solving a joint graph alignment and merging task. This task leads to a fused Gromov-Wasserstein (FGW) barycenter problem, in which we approximate the alignment of the graphs based on a novel inductive fused Gromov-Wasserstein (IFGW) distance. The IFGW distance is parameterized by neural networks and can be learned under mild assumptions, thus, we can infer the FGW barycenters without iterative optimization and predict future graphs efficiently. Experiments show that our GWAR achieves encouraging performance in modeling evolutionary graphs in privacy-preserving scenarios.

Original languageEnglish
Title of host publicationAAAI-23 Special Tracks
EditorsBrian Williams, Yiling Chen, Jennifer Neville
PublisherAAAI press
Pages14566-14574
Number of pages9
ISBN (Electronic)9781577358800
Publication statusPublished - 27 Jun 2023
Event37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, United States
Duration: 7 Feb 202314 Feb 2023

Publication series

NameProceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Volume37

Conference

Conference37th AAAI Conference on Artificial Intelligence, AAAI 2023
Country/TerritoryUnited States
CityWashington
Period7/02/2314/02/23

Fingerprint

Dive into the research topics of 'Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression'. Together they form a unique fingerprint.

Cite this