Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression

Yue Xiang, Dixin Luo, Hongteng Xu*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Real-world graphs like social networks are often evolutionary over time, whose observations at different timestamps lead to graph sequences. Modeling such evolutionary graphs is important for many applications, but solving this problem often requires the correspondence between the graphs at different timestamps, which may leak private node information, e.g., the temporal behavior patterns of the nodes. We proposed a Gromov-Wasserstein Autoregressive (GWAR) model to capture the generative mechanisms of evolutionary graphs, which does not require the correspondence information and thus preserves the privacy of the graphs’ nodes. This model consists of two autoregressions, predicting the number of nodes and the probabilities of nodes and edges, respectively. The model takes observed graphs as its input and predicts future graphs via solving a joint graph alignment and merging task. This task leads to a fused Gromov-Wasserstein (FGW) barycenter problem, in which we approximate the alignment of the graphs based on a novel inductive fused Gromov-Wasserstein (IFGW) distance. The IFGW distance is parameterized by neural networks and can be learned under mild assumptions, thus, we can infer the FGW barycenters without iterative optimization and predict future graphs efficiently. Experiments show that our GWAR achieves encouraging performance in modeling evolutionary graphs in privacy-preserving scenarios.

源语言英语
主期刊名AAAI-23 Special Tracks
编辑Brian Williams, Yiling Chen, Jennifer Neville
出版商AAAI press
14566-14574
页数9
ISBN(电子版)9781577358800
出版状态已出版 - 27 6月 2023
活动37th AAAI Conference on Artificial Intelligence, AAAI 2023 - Washington, 美国
期限: 7 2月 202314 2月 2023

出版系列

姓名Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
37

会议

会议37th AAAI Conference on Artificial Intelligence, AAAI 2023
国家/地区美国
Washington
时期7/02/2314/02/23

指纹

探究 'Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression' 的科研主题。它们共同构成独一无二的指纹。

引用此