TY - GEN
T1 - Privacy-Preserved Evolutionary Graph Modeling via Gromov-Wasserstein Autoregression
AU - Xiang, Yue
AU - Luo, Dixin
AU - Xu, Hongteng
N1 - Publisher Copyright:
Copyright © 2023, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2023/6/27
Y1 - 2023/6/27
N2 - Real-world graphs like social networks are often evolutionary over time, whose observations at different timestamps lead to graph sequences. Modeling such evolutionary graphs is important for many applications, but solving this problem often requires the correspondence between the graphs at different timestamps, which may leak private node information, e.g., the temporal behavior patterns of the nodes. We proposed a Gromov-Wasserstein Autoregressive (GWAR) model to capture the generative mechanisms of evolutionary graphs, which does not require the correspondence information and thus preserves the privacy of the graphs’ nodes. This model consists of two autoregressions, predicting the number of nodes and the probabilities of nodes and edges, respectively. The model takes observed graphs as its input and predicts future graphs via solving a joint graph alignment and merging task. This task leads to a fused Gromov-Wasserstein (FGW) barycenter problem, in which we approximate the alignment of the graphs based on a novel inductive fused Gromov-Wasserstein (IFGW) distance. The IFGW distance is parameterized by neural networks and can be learned under mild assumptions, thus, we can infer the FGW barycenters without iterative optimization and predict future graphs efficiently. Experiments show that our GWAR achieves encouraging performance in modeling evolutionary graphs in privacy-preserving scenarios.
AB - Real-world graphs like social networks are often evolutionary over time, whose observations at different timestamps lead to graph sequences. Modeling such evolutionary graphs is important for many applications, but solving this problem often requires the correspondence between the graphs at different timestamps, which may leak private node information, e.g., the temporal behavior patterns of the nodes. We proposed a Gromov-Wasserstein Autoregressive (GWAR) model to capture the generative mechanisms of evolutionary graphs, which does not require the correspondence information and thus preserves the privacy of the graphs’ nodes. This model consists of two autoregressions, predicting the number of nodes and the probabilities of nodes and edges, respectively. The model takes observed graphs as its input and predicts future graphs via solving a joint graph alignment and merging task. This task leads to a fused Gromov-Wasserstein (FGW) barycenter problem, in which we approximate the alignment of the graphs based on a novel inductive fused Gromov-Wasserstein (IFGW) distance. The IFGW distance is parameterized by neural networks and can be learned under mild assumptions, thus, we can infer the FGW barycenters without iterative optimization and predict future graphs efficiently. Experiments show that our GWAR achieves encouraging performance in modeling evolutionary graphs in privacy-preserving scenarios.
UR - http://www.scopus.com/inward/record.url?scp=85167964813&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85167964813
T3 - Proceedings of the 37th AAAI Conference on Artificial Intelligence, AAAI 2023
SP - 14566
EP - 14574
BT - AAAI-23 Special Tracks
A2 - Williams, Brian
A2 - Chen, Yiling
A2 - Neville, Jennifer
PB - AAAI press
T2 - 37th AAAI Conference on Artificial Intelligence, AAAI 2023
Y2 - 7 February 2023 through 14 February 2023
ER -