TY - JOUR
T1 - Noise Reduction of OCT Images Based on the External Patch Prior Guided Internal Clustering and Morphological Analysis
AU - Fan, Yingwei
AU - Li, Yangxi
AU - Gao, Tianxin
AU - Tang, Xiaoying
N1 - Publisher Copyright:
© 2022 by the authors.
PY - 2022/8
Y1 - 2022/8
N2 - Optical coherence tomography (OCT) is widely used in biomedical imaging. However, noise severely affects diagnosing and identifying diseased tissues on OCT images. Here, a noise reduction method based on the external patch prior guided internal clustering and morphological analysis (E2PGICMA) is developed to remove the noise of OCT images. The external patch prior guided internal clustering algorithm is used to reduce speckle noise. The morphological analysis algorithm is employed to the background for contrast enhancement. OCT images of in vivo normal skin tissues were analyzed to remove noise using the proposed method. The estimated standard deviations of the noise were chosen as different values for evaluating the quantitative metrics. The visual quality improvement includes more textures and fine detail preservation. The denoising effects of different methods were compared. Then, quantitative and qualitative evaluations of this proposed method were conducted. The results demonstrated that the SNR, PSNR, and XCOR were higher than those of the other noise-reduction methods, reaching 15.05 dB, 27.48 dB, and 0.9959, respectively. Furthermore, the presented method’s noise reduction ratio (NRR) reached 0.8999. This proposed method can efficiently remove the background and speckle noise. Improving the proposed noise reduction method would outperform existing state-of-the-art OCT despeckling methods.
AB - Optical coherence tomography (OCT) is widely used in biomedical imaging. However, noise severely affects diagnosing and identifying diseased tissues on OCT images. Here, a noise reduction method based on the external patch prior guided internal clustering and morphological analysis (E2PGICMA) is developed to remove the noise of OCT images. The external patch prior guided internal clustering algorithm is used to reduce speckle noise. The morphological analysis algorithm is employed to the background for contrast enhancement. OCT images of in vivo normal skin tissues were analyzed to remove noise using the proposed method. The estimated standard deviations of the noise were chosen as different values for evaluating the quantitative metrics. The visual quality improvement includes more textures and fine detail preservation. The denoising effects of different methods were compared. Then, quantitative and qualitative evaluations of this proposed method were conducted. The results demonstrated that the SNR, PSNR, and XCOR were higher than those of the other noise-reduction methods, reaching 15.05 dB, 27.48 dB, and 0.9959, respectively. Furthermore, the presented method’s noise reduction ratio (NRR) reached 0.8999. This proposed method can efficiently remove the background and speckle noise. Improving the proposed noise reduction method would outperform existing state-of-the-art OCT despeckling methods.
KW - medical imaging
KW - morphological analysis
KW - noise reduction
KW - optical coherence tomography
KW - speckle noise
UR - http://www.scopus.com/inward/record.url?scp=85137253461&partnerID=8YFLogxK
U2 - 10.3390/photonics9080543
DO - 10.3390/photonics9080543
M3 - Article
AN - SCOPUS:85137253461
SN - 2304-6732
VL - 9
JO - Photonics
JF - Photonics
IS - 8
M1 - 543
ER -