Mobile crowdsensing for data freshness: A deep reinforcement learning approach

Zipeng Dai, Hao Wang, Chi Harold Liu*, Rui Han, Jian Tang, Guoren Wang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Citations (Scopus)

Abstract

Data collection by mobile crowdsensing (MCS) is emerging as data sources for smart city applications, however how to ensure data freshness has sparse research exposure but quite important in practice. In this paper, we consider to use a group of mobile agents (MAs) like UAVs and driverless cars which are equipped with multiple antennas to move around in the task area to collect data from deployed sensor nodes (SNs). Our goal is to minimize the age of information (AoI) of all SNs and energy consumption of MAs during movement and data upload. To this end, we propose a centralized deep reinforcement learning (DRL)-based solution called "DRL-freshMCS"for controlling MA trajectory planning and SN scheduling. We further utilize implicit quantile networks to maintain the accurate value estimation and steady policies for MAs. Then, we design an exploration and exploitation mechanism by dynamic distributed prioritized experience replay. We also derive the theoretical lower bound for episodic AoI. Extensive simulation results show that DRL-freshMCS significantly reduces the episodic AoI per remaining energy, compared to five baselines when varying different number of antennas and data upload thresholds, and number of SNs. We also visualize their trajectories and AoI update process for clear illustrations.

Original languageEnglish
Title of host publicationINFOCOM 2021 - IEEE Conference on Computer Communications
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9780738112817
DOIs
Publication statusPublished - 10 May 2021
Event40th IEEE Conference on Computer Communications, INFOCOM 2021 - Vancouver, Canada
Duration: 10 May 202113 May 2021

Publication series

NameProceedings - IEEE INFOCOM
Volume2021-May
ISSN (Print)0743-166X

Conference

Conference40th IEEE Conference on Computer Communications, INFOCOM 2021
Country/TerritoryCanada
CityVancouver
Period10/05/2113/05/21

Keywords

  • Data freshness
  • Deep reinforcement learning
  • Mobile crowdsensing

Fingerprint

Dive into the research topics of 'Mobile crowdsensing for data freshness: A deep reinforcement learning approach'. Together they form a unique fingerprint.

Cite this