Genre separation network with adversarial training for cross-genre relation extraction

Ge Shi, Chong Feng*, Lifu Huang, Boliang Zhang, Heng Ji, Lejian Liao, Heyan Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

34 Citations (Scopus)

Abstract

Relation Extraction suffers from dramatical performance decrease when training a model on one genre and directly applying it to a new genre, due to the distinct feature distributions. Previous studies address this problem by discovering a shared space across genres using manually crafted features, which requires great human effort. To effectively automate this process, we design a genre-separation network, which applies two encoders, one genre-independent and one genre-shared, to explicitly extract genre-specific and genre-agnostic features. Then we train a relation classifier using the genre-agnostic features on the source genre and directly apply to the target genre. Experiment results on three distinct genres of the ACE dataset show that our approach achieves up to 6.1% absolute F1-score gain compared to previous methods. By incorporating a set of external linguistic features, our approach outperforms the state-of-the-art by 1.7% absolute F1 gain. We make all programs of our model publicly available for research purpose.

Original languageEnglish
Title of host publicationProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
EditorsEllen Riloff, David Chiang, Julia Hockenmaier, Jun'ichi Tsujii
PublisherAssociation for Computational Linguistics
Pages1018-1023
Number of pages6
ISBN (Electronic)9781948087841
Publication statusPublished - 2018
Event2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018 - Brussels, Belgium
Duration: 31 Oct 20184 Nov 2018

Publication series

NameProceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018

Conference

Conference2018 Conference on Empirical Methods in Natural Language Processing, EMNLP 2018
Country/TerritoryBelgium
CityBrussels
Period31/10/184/11/18

Fingerprint

Dive into the research topics of 'Genre separation network with adversarial training for cross-genre relation extraction'. Together they form a unique fingerprint.

Cite this