Food recommendation with graph convolutional network

Xiaoyan Gao, Fuli Feng, Heyan Huang*, Xian Ling Mao, Tian Lan, Zewen Chi

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

47 Citations (Scopus)

Abstract

Food recommendation has attracted increasing attentions to various food-related applications and services. The food recommender models aim to match users’ preferences with recipes, where the key lies in the representation learning of users and recipes. However, ranging from early content-based filtering and collaborative filtering methods to recent hybrid methods, the existing work overlooks the various food-related relations, especially the ingredient-ingredient relations, leading to incomprehensive representations. To bridge this gap, we propose a novel model Food recommendation with Graph Convolutional Network (FGCN), which exploits ingredient-ingredient, ingredient-recipe, and recipe-user relations deeply. FGCN employs the information propagation mechanism and adopts multiple embedding propagation layers to model high-order connectivity across different food-related relations and enhance the representations. Specifically, we develop three types of information propagation: (1) ingredient-ingredient information propagation, (2) ingredient-recipe information propagation, and (3) recipe-user information propagation. To validate the effectiveness and rationality of FGCN, we conduct extensive experiments on a real-world dataset. The results show that the proposed FGCN outperforms the state-of-the-art baselines. Further in-depth analyses reveal that FGCN could alleviate the sparsity issue in food recommendation.

Original languageEnglish
Pages (from-to)170-183
Number of pages14
JournalInformation Sciences
Volume584
DOIs
Publication statusPublished - Jan 2022

Keywords

  • Food recommendation
  • Food-related relations
  • Graph convolutional network
  • High-order connectivity
  • Information propagation

Fingerprint

Dive into the research topics of 'Food recommendation with graph convolutional network'. Together they form a unique fingerprint.

Cite this