Exploring both Individuality and Cooperation for Air-Ground Spatial Crowdsourcing by Multi-Agent Deep Reinforcement Learning

Yuxiao Ye, Chi Harold Liu, Zipeng Dai, Jianxin Zhao*, Ye Yuan, Guoren Wang, Jian Tang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Citations (Scopus)

Abstract

Spatial crowdsourcing (SC) has proven as a promising paradigm to employ human workers to collect data from diverse Point-of-Interests (PoIs) in a given area. Different from using human participants, we propose a novel air-ground SC scenario to fully take advantage of benefits brought by unmanned vehicles (UVs), including unmanned aerial vehicles (UAVs) with controllable high mobility and unmanned ground vehicles (UGVs) with abundant sensing resources. The objective is to maximize the amount of collected data, geographical fairness among all PoIs, and minimize the data loss and energy consumption, integrated as one single metric called "efficiency". We explicitly explore both individuality and cooperation natures of UAVs and UGVs by proposing a multi-agent deep reinforcement learning (MADRL) framework called "h/i-MADRL". Compatible with all multi-agent actor-critic methods, h/i-MADRL adds two novel plug-in modules: (a) h-CoPO, which models the cooperation preference among heterogeneous UAVs and UGVs; and (b) i-EOI, which extracts the UV's individuality and encourages a better spatial division of work by adding intrinsic reward. Extensive experimental results on two real-world datasets on Purdue and NCSU campuses confirm that h/i-MADRL achieves a better exploration of both individuality and cooperation simultaneously, resulting in a better performance in terms of efficiency compared with five baselines.

Original languageEnglish
Title of host publicationProceedings - 2023 IEEE 39th International Conference on Data Engineering, ICDE 2023
PublisherIEEE Computer Society
Pages205-217
Number of pages13
ISBN (Electronic)9798350322279
DOIs
Publication statusPublished - 2023
Event39th IEEE International Conference on Data Engineering, ICDE 2023 - Anaheim, United States
Duration: 3 Apr 20237 Apr 2023

Publication series

NameProceedings - International Conference on Data Engineering
Volume2023-April
ISSN (Print)1084-4627

Conference

Conference39th IEEE International Conference on Data Engineering, ICDE 2023
Country/TerritoryUnited States
CityAnaheim
Period3/04/237/04/23

Keywords

  • Air-ground spatial crowdsourcing
  • Intrinsic reward
  • Multi-agent deep reinforcement learning

Fingerprint

Dive into the research topics of 'Exploring both Individuality and Cooperation for Air-Ground Spatial Crowdsourcing by Multi-Agent Deep Reinforcement Learning'. Together they form a unique fingerprint.

Cite this