Coarse-To-Fine Document Ranking for Multi-Document Reading Comprehension with Answer-Completion

Hongyu Liu, Shumin Shi*, Heyan Huang

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Multi-document machine reading comprehension (MRC) has two characteristics compared with traditional MRC: 1) many documents are irrelevant to the question; 2) the length of the answer is relatively longer. However, in existing models, not only key ranking metrics at different granularity are ignored, but also few current methods can predict the complete answer as they mainly deal with the start and end token of each answer equally. To address these issues, we propose a model that can fuse coarse-To-fine ranking processes based on document chunks to distinguish various documents more effectively. Furthermore, we incorporate an answer-completion strategy to predict complete answers by modifying loss function. The experimental results show that our model for multi-document MRC makes a significant improvement with 7.4% and 13% respectively on Rouge-L and BLEU-4 score, in contrast with the current models on a public Chinese dataset, DuReader.

Original languageEnglish
Title of host publicationProceedings of the 2019 International Conference on Asian Language Processing, IALP 2019
EditorsMan Lan, Yuanbin Wu, Minghui Dong, Yanfeng Lu, Yan Yang
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages407-412
Number of pages6
ISBN (Electronic)9781728150147
DOIs
Publication statusPublished - Nov 2019
Event23rd International Conference on Asian Language Processing, IALP 2019 - Shanghai, China
Duration: 15 Nov 201917 Nov 2019

Publication series

NameProceedings of the 2019 International Conference on Asian Language Processing, IALP 2019

Conference

Conference23rd International Conference on Asian Language Processing, IALP 2019
Country/TerritoryChina
CityShanghai
Period15/11/1917/11/19

Keywords

  • answer prediction
  • document ranking
  • multi-document reading comprehension

Fingerprint

Dive into the research topics of 'Coarse-To-Fine Document Ranking for Multi-Document Reading Comprehension with Answer-Completion'. Together they form a unique fingerprint.

Cite this