Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal-Organic Framework

Yuanbo Wang, Wenbo Wu, Jingjing Liu, Purnima Naresh Manghnani, Fang Hu, Dou Ma, Cathleen Teh, Bo Wang, Bin Liu*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

194 Citations (Scopus)

Abstract

Activation of photosensitizers (PSs) in targeted lesion and minimization of reactive oxygen species (ROS) depletion by endogenous antioxidants constitute promising approaches to perform highly effective image-guided photodynamic therapy (PDT) with minimal non-specific phototoxicity. Traditional strategies to fabricate controllable PS platforms rely on molecular design, which requires specific modification of each PS before PDT. Therefore, construction of a general tumor-responsive PDT platform with minimum ROS loss from endogenous antioxidant, typically glutathione (GSH), is highly desirable. Herein, MOF-199, a Cu(II) carboxylate-based metal-organic framework (MOF), is selected to serve as an inert carrier to load PSs with prohibited photosensitization during delivery. After cellular uptake, Cu (II) in the MOFs effectively scavenges endogenous GSH, concomitantly induces decomposition of MOF-199 to release the encapsulated PSs, and recovers their ROS generation. In vitro and in vivo experiments demonstrate highly effective cancer cell ablation and anticancer PDT with diminished normal cell phototoxicity. This strategy is generally applicable to PSs with both aggregation-induced emission and aggregation-caused quenching to implement activatable and enhanced image-guided PDT.

Original languageEnglish
JournalACS Nano
DOIs
Publication statusAccepted/In press - 2019

Keywords

  • activatable photodynamic therapy
  • aggregation-induced emission
  • glutathione
  • metal-organic frameworks
  • photosensitizers

Fingerprint

Dive into the research topics of 'Cancer-Cell-Activated Photodynamic Therapy Assisted by Cu(II)-Based Metal-Organic Framework'. Together they form a unique fingerprint.

Cite this