BIT at SemEval-2017 Task 1: Using Semantic Information Space to Evaluate Semantic Textual Similarity

Hao Wu, Heyan Huang*, Ping Jian, Yuhang Guo, Chao Su

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

29 Citations (Scopus)

Abstract

This paper presents three systems for semantic textual similarity (STS) evaluation at SemEval-2017 STS task. One is an unsupervised system and the other two are supervised systems which simply employ the unsupervised one. All our systems mainly depend on the semantic information space (SIS), which is constructed based on the semantic hierarchical taxonomy in WordNet, to compute non-overlapping information content (IC) of sentences. Our team ranked 2nd among 31 participating teams by the primary score of Pearson correlation coefficient (PCC) mean of 7 tracks and achieved the best performance on Track 1 (AR-AR) dataset.

Original languageEnglish
Title of host publicationACL 2017 - 11th International Workshop on Semantic Evaluations, SemEval 2017, Proceedings of the Workshop
PublisherAssociation for Computational Linguistics (ACL)
Pages77-84
Number of pages8
ISBN (Electronic)9781945626555
Publication statusPublished - 2017
Event11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017 - Vancouver, Canada
Duration: 3 Aug 20174 Aug 2017

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference11th International Workshop on Semantic Evaluations, SemEval 2017, co-located with the 55th Annual Meeting of the Association for Computational Linguistics, ACL 2017
Country/TerritoryCanada
CityVancouver
Period3/08/174/08/17

Fingerprint

Dive into the research topics of 'BIT at SemEval-2017 Task 1: Using Semantic Information Space to Evaluate Semantic Textual Similarity'. Together they form a unique fingerprint.

Cite this