AttenWalker: Unsupervised Long-Document Question Answering via Attention-based Graph Walking

Yuxiang Nie, Heyan Huang*, Wei Wei, Xian Ling Mao

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

Annotating long-document question answering (long-document QA) pairs is time-consuming and expensive. To alleviate the problem, it might be possible to generate long-document QA pairs via unsupervised question answering (UQA) methods. However, existing UQA tasks are based on short documents, and can hardly incorporate long-range information. To tackle the problem, we propose a new task, named unsupervised long-document question answering (ULQA), aiming to generate high-quality long-document QA instances in an unsupervised manner. Besides, we propose AttenWalker, a novel unsupervised method to aggregate and generate answers with long-range dependency so as to construct long-document QA pairs. Specifically, AttenWalker is composed of three modules, i.e., span collector, span linker and answer aggregator. Firstly, the span collector takes advantage of constituent parsing and reconstruction loss to select informative candidate spans for constructing answers. Secondly, by going through the attention graph of a pre-trained long-document model, potentially interrelated text spans (that might be far apart) could be linked together via an attention-walking algorithm. Thirdly, in the answer aggregator, linked spans are aggregated into the final answer via the mask-filling ability of a pre-trained model. Extensive experiments show that AttenWalker outperforms previous methods on Qasper and NarrativeQA. In addition, AttenWalker also shows strong performance in the few-shot learning setting.

Original languageEnglish
Title of host publicationFindings of the Association for Computational Linguistics, ACL 2023
PublisherAssociation for Computational Linguistics (ACL)
Pages13650-13663
Number of pages14
ISBN (Electronic)9781959429623
Publication statusPublished - 2023
Event61st Annual Meeting of the Association for Computational Linguistics, ACL 2023 - Toronto, Canada
Duration: 9 Jul 202314 Jul 2023

Publication series

NameProceedings of the Annual Meeting of the Association for Computational Linguistics
ISSN (Print)0736-587X

Conference

Conference61st Annual Meeting of the Association for Computational Linguistics, ACL 2023
Country/TerritoryCanada
CityToronto
Period9/07/2314/07/23

Fingerprint

Dive into the research topics of 'AttenWalker: Unsupervised Long-Document Question Answering via Attention-based Graph Walking'. Together they form a unique fingerprint.

Cite this