Video object segmentation aggregation

Tianfei Zhou, Yao Lu, Huijun Di, Jian Zhang

科研成果: 书/报告/会议事项章节会议稿件同行评审

10 引用 (Scopus)

摘要

We present an approach for unsupervised object segmentation in unconstrained videos. Driven by the latest progress in this field, we argue that segmentation performance can be largely improved by aggregating the results generated by state-of-the-art algorithms. Initially, objects in individual frames are estimated through a per-frame aggregation procedure using majority voting. While this can predict relatively accurate object location, the initial estimation fails to cover the parts that are wrongly labeled by more than half of the algorithms. To address this, we build a holistic appearance model using non-local appearance cues by linear regression. Then, we integrate the appearance priors and spatio-temporal information into an energy minimization framework to refine the initial estimation. We evaluate our method on challenging benchmark videos and demonstrate that it outperforms state-of-the-art algorithms.

源语言英语
主期刊名2016 IEEE International Conference on Multimedia and Expo, ICME 2016
出版商IEEE Computer Society
ISBN(电子版)9781467372589
DOI
出版状态已出版 - 25 8月 2016
活动2016 IEEE International Conference on Multimedia and Expo, ICME 2016 - Seattle, 美国
期限: 11 7月 201615 7月 2016

出版系列

姓名Proceedings - IEEE International Conference on Multimedia and Expo
2016-August
ISSN(印刷版)1945-7871
ISSN(电子版)1945-788X

会议

会议2016 IEEE International Conference on Multimedia and Expo, ICME 2016
国家/地区美国
Seattle
时期11/07/1615/07/16

指纹

探究 'Video object segmentation aggregation' 的科研主题。它们共同构成独一无二的指纹。

引用此