@inproceedings{cdc6ffc94505468fa8919d916acb31ec,
title = "Video object segmentation aggregation",
abstract = "We present an approach for unsupervised object segmentation in unconstrained videos. Driven by the latest progress in this field, we argue that segmentation performance can be largely improved by aggregating the results generated by state-of-the-art algorithms. Initially, objects in individual frames are estimated through a per-frame aggregation procedure using majority voting. While this can predict relatively accurate object location, the initial estimation fails to cover the parts that are wrongly labeled by more than half of the algorithms. To address this, we build a holistic appearance model using non-local appearance cues by linear regression. Then, we integrate the appearance priors and spatio-temporal information into an energy minimization framework to refine the initial estimation. We evaluate our method on challenging benchmark videos and demonstrate that it outperforms state-of-the-art algorithms.",
keywords = "Video object segmentation, appearance model, data fusion",
author = "Tianfei Zhou and Yao Lu and Huijun Di and Jian Zhang",
note = "Publisher Copyright: {\textcopyright} 2016 IEEE.; 2016 IEEE International Conference on Multimedia and Expo, ICME 2016 ; Conference date: 11-07-2016 Through 15-07-2016",
year = "2016",
month = aug,
day = "25",
doi = "10.1109/ICME.2016.7552891",
language = "English",
series = "Proceedings - IEEE International Conference on Multimedia and Expo",
publisher = "IEEE Computer Society",
booktitle = "2016 IEEE International Conference on Multimedia and Expo, ICME 2016",
address = "United States",
}