The Hausdorff Dimension of the Spectrum of a Class of Generalized Thue-Morse Hamiltonians

Qinghui Liu*, Zhiyi Tang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

摘要

Let τ be a generalized Thue-Morse substitution on a two-letter alphabet {a, b}: τ (a) = a m b m, τ(b) = b m a m for the integer m ≥ 2. Let ξ be a sequence in {a, b} that is generated by τ. We study the one-dimensional Schrödinger operator Hm,λ on l 2 (ℤ) with a potential given by v(n) = λVξ(n) , where λ > 0 is the coupling and Vξ(n) = 1 (Vξ(n) = −1) if ξ(n) = a (ξ(n) = b). Let Λ2 = 2, and for m > 2, let Λ m = m if m = 0 mod 4; let Λ m = m − 3 if m ≡ 1 mod 4; let Λ m = m − 2 if m ≡ 2 mod 4; let Λ m = m − 1 if m ≡ 3 mod 4. We show that the Hausdorff dimension of the spectrum σ(Hm,λ) satisfies that dimHσ(Hm,λ)>logΛmlog64m+4. It is interesting to see that dim H σ(Hm,λ) tends to 1 as m tends to infinity.

源语言英语
页(从-至)1997-2004
页数8
期刊Acta Mathematica Scientia
43
5
DOI
出版状态已出版 - 9月 2023

指纹

探究 'The Hausdorff Dimension of the Spectrum of a Class of Generalized Thue-Morse Hamiltonians' 的科研主题。它们共同构成独一无二的指纹。

引用此