Study of grey model theory and neural network algorithm for improving dynamic measure precision in low cost IMU

Yu Liu*, Jun Liu, Dengfeng Li, Leilei Li, Yanbin Sun, Yingjun Pan

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 8
see details

摘要

The sensors' output data must be optimized because of the zero output varies along with time and temperature in the dynamic measuring accuracy of low cost inertial measurement unit (IMU). Two steps are done to achieve the designed precision. Firstly, the Grey model theory is proposed for the gyro's null drift output data process. Secondly, the RBF neural network is presented to compensate the gyro's null drift. Experiment proved that the mean variance of the zero drifting depresses from 0.0086°/ s to 0.0004°/ s and the deviation is only 30.8% of original sampled data, when the new error compensation algorithm is applied. The compensating algorithm raises the measure precision of IMU, whose static accuracy reaches to ±0.1° and dynamic accuracy is 1° (rms), and the cost is low.

源语言英语
主期刊名2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009
234-238
页数5
DOI
出版状态已出版 - 2009
已对外发布
活动2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009 - Los Angeles, CA, 美国
期限: 31 3月 20092 4月 2009

出版系列

姓名2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009
5

会议

会议2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009
国家/地区美国
Los Angeles, CA
时期31/03/092/04/09

指纹

探究 'Study of grey model theory and neural network algorithm for improving dynamic measure precision in low cost IMU' 的科研主题。它们共同构成独一无二的指纹。

引用此

Liu, Y., Liu, J., Li, D., Li, L., Sun, Y., & Pan, Y. (2009). Study of grey model theory and neural network algorithm for improving dynamic measure precision in low cost IMU. 在 2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009 (页码 234-238). 文章 5170532 (2009 WRI World Congress on Computer Science and Information Engineering, CSIE 2009; 卷 5). https://doi.org/10.1109/CSIE.2009.980