Root geometry of polynomial sequences I: Type (0, 1)

Jonathan L. Gross, Toufik Mansour, Thomas W. Tucker, David G.L. Wang*

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

This paper concerns the distribution in the complex plane of the roots of a polynomial sequence {Wn(x)}n≥0 given by a recursion Wn(x)=aWn-1(x)+(bx+c)Wn-2(x), with W0(x)=1 and W1(x)=t(x-r), where a>0, b>0, and c, t, r∈R. Our results include proof of the distinct-real-rootedness of every such polynomial Wn(x), derivation of the best bound for the zero-set {x|Wn(x)=0for some n≥1}, and determination of three precise limit points of this zero-set. Also, we give several applications from combinatorics and topological graph theory.

源语言英语
文章编号19736
页(从-至)1261-1289
页数29
期刊Journal of Mathematical Analysis and Applications
433
2
DOI
出版状态已出版 - 15 1月 2016

指纹

探究 'Root geometry of polynomial sequences I: Type (0, 1)' 的科研主题。它们共同构成独一无二的指纹。

引用此