On-Chip Hardware Accelerator for Automated Diagnosis Through Human-Machine Interactions in Healthcare Delivery

Weigang Hou, Zhaolong Ning, Xiping Hu*, Lei Guo, Xiaolan Deng, Yan Yang, Ricky Y.K. Kwok

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

30 引用 (Scopus)

摘要

The automated diagnosis helps us better understand the complex landscape of diseases, leading to more effective, early and reliable medical diagnosis and therapy. The human-machine interactions in healthcare delivery relying on automated cyber-physical systems (ACPSs) play an important role in the automated diagnosis. Currently, the multicore accelerator used for ACPS has utilized the network-on-chip (NoC) for personalized healthcare. However, the discrete cores based on NoC are affected by limited computation speed, since the data have to pass through an electrical interconnect. In this paper, we propose a novel optical NoC (ONoC) solution of designing discrete cores to quickly understand biomarkers for early detecting abnormal pathophysiology, such as the deviation from the protein's native state. We analyze the performance of our ONoC-based ACPS accelerator for personalized healthcare by virtue of the tested proteins widely adopted in the lattice protein model. Our mathematical analysis and simulation results demonstrate that: 1) the chip area becomes smaller than a traditional design, which makes the personalized healthcare product more convenient; 2) the computation speed is promoted, resulting in the rapid understanding of biomarkers; and 3) we improve the data transmission reliability through accurately capturing the photonic effect so that desirable human-machine interactions can be guaranteed. Note to Practitioners-We design an on-chip hardware accelerator for automated diagnosis and personalized healthcare by predicting biological protein folding. The simulation results based on the lattice protein model can well guide the practitioners to design a more convenient and reliable product quickly detecting the biomarker, such as the deviation from the protein's native state.

源语言英语
文章编号8370065
页(从-至)206-217
页数12
期刊IEEE Transactions on Automation Science and Engineering
16
1
DOI
出版状态已出版 - 1月 2019
已对外发布

指纹

探究 'On-Chip Hardware Accelerator for Automated Diagnosis Through Human-Machine Interactions in Healthcare Delivery' 的科研主题。它们共同构成独一无二的指纹。

引用此