Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for Thoracic Disease Identification

Yi Zhou*, Lei Huang, Tianfei Zhou, Ling Shao

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Chest X-rays are an important and accessible clinical imaging tool for the detection of many thoracic diseases. Over the past decade, deep learning, with a focus on the convolutional neural network (CNN), has become the most powerful computer-aided diagnosis technology for improving disease identification performance. However, training an effective and robust deep CNN usually requires a large amount of data with high annotation quality. For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming. Thus, existing public chest X-ray datasets usually adopt language pattern based methods to automatically mine labels from reports. However, this results in label uncertainty and inconsistency. In this paper, we propose many-to-one distribution learning (MODL) and Knearest neighbor smoothing (KNNS) methods from two perspectives to improve a single model's disease identification performance, rather than focusing on an ensemble of models. MODL integrates multiple models to obtain a soft label distribution for optimizing the single target model, which can reduce the effects of original label uncertainty. Moreover, KNNS aims to enhance the robustness of the target model to provide consistent predictions on images with similar medical findings. Extensive experiments on the public NIH Chest X-ray and CheXpert datasets show that our model achieves consistent improvements over the state-of-the-art methods.

源语言英语
主期刊名35th AAAI Conference on Artificial Intelligence, AAAI 2021
出版商Association for the Advancement of Artificial Intelligence
768-776
页数9
ISBN(电子版)9781713835974
出版状态已出版 - 2021
已对外发布
活动35th AAAI Conference on Artificial Intelligence, AAAI 2021 - Virtual, Online
期限: 2 2月 20219 2月 2021

出版系列

姓名35th AAAI Conference on Artificial Intelligence, AAAI 2021
1

会议

会议35th AAAI Conference on Artificial Intelligence, AAAI 2021
Virtual, Online
时期2/02/219/02/21

指纹

探究 'Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for Thoracic Disease Identification' 的科研主题。它们共同构成独一无二的指纹。

引用此