TY - JOUR
T1 - Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity
AU - Liu, Ji
AU - Wang, Yifu
N1 - Publisher Copyright:
© 2016 Elsevier Inc.
PY - 2017/3/1
Y1 - 2017/3/1
N2 - In this paper, we consider the following Keller–Segel(–Navier)–Stokes system{nt+u⋅∇n=Δn−∇⋅(nχ(c)∇c),x∈Ω, t>0,ct+u⋅∇c=Δc−c+n,x∈Ω, t>0,ut+κ(u⋅∇)u=Δu+∇P+n∇ϕ,x∈Ω, t>0,∇⋅u=0,x∈Ω, t>0, where Ω⊂RN (N=2,3) is a bounded domain with smooth boundary ∂Ω, κ∈R and χ(c) is assumed to generalize the prototypeχ(c)=χ0(1+μc)2, c≥0. It is proved that i) for κ≠0 and N=2 or κ=0 and N∈{2,3}, the corresponding initial–boundary problem admits a unique global classical solution which is bounded; ii) for κ≠0 and N=3, the corresponding initial–boundary problem possesses at least one global weak solution.
AB - In this paper, we consider the following Keller–Segel(–Navier)–Stokes system{nt+u⋅∇n=Δn−∇⋅(nχ(c)∇c),x∈Ω, t>0,ct+u⋅∇c=Δc−c+n,x∈Ω, t>0,ut+κ(u⋅∇)u=Δu+∇P+n∇ϕ,x∈Ω, t>0,∇⋅u=0,x∈Ω, t>0, where Ω⊂RN (N=2,3) is a bounded domain with smooth boundary ∂Ω, κ∈R and χ(c) is assumed to generalize the prototypeχ(c)=χ0(1+μc)2, c≥0. It is proved that i) for κ≠0 and N=2 or κ=0 and N∈{2,3}, the corresponding initial–boundary problem admits a unique global classical solution which is bounded; ii) for κ≠0 and N=3, the corresponding initial–boundary problem possesses at least one global weak solution.
KW - Boundedness
KW - Global existence
KW - Keller–Segel
KW - Navier–Stokes
KW - Stokes
UR - http://www.scopus.com/inward/record.url?scp=84993965181&partnerID=8YFLogxK
U2 - 10.1016/j.jmaa.2016.10.028
DO - 10.1016/j.jmaa.2016.10.028
M3 - Article
AN - SCOPUS:84993965181
SN - 0022-247X
VL - 447
SP - 499
EP - 528
JO - Journal of Mathematical Analysis and Applications
JF - Journal of Mathematical Analysis and Applications
IS - 1
ER -