摘要
In this paper, we consider the following Keller–Segel(–Navier)–Stokes system{nt+u⋅∇n=Δn−∇⋅(nχ(c)∇c),x∈Ω, t>0,ct+u⋅∇c=Δc−c+n,x∈Ω, t>0,ut+κ(u⋅∇)u=Δu+∇P+n∇ϕ,x∈Ω, t>0,∇⋅u=0,x∈Ω, t>0, where Ω⊂RN (N=2,3) is a bounded domain with smooth boundary ∂Ω, κ∈R and χ(c) is assumed to generalize the prototypeχ(c)=χ0(1+μc)2, c≥0. It is proved that i) for κ≠0 and N=2 or κ=0 and N∈{2,3}, the corresponding initial–boundary problem admits a unique global classical solution which is bounded; ii) for κ≠0 and N=3, the corresponding initial–boundary problem possesses at least one global weak solution.
源语言 | 英语 |
---|---|
页(从-至) | 499-528 |
页数 | 30 |
期刊 | Journal of Mathematical Analysis and Applications |
卷 | 447 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 1 3月 2017 |
指纹
探究 'Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity' 的科研主题。它们共同构成独一无二的指纹。引用此
Liu, J., & Wang, Y. (2017). Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity. Journal of Mathematical Analysis and Applications, 447(1), 499-528. https://doi.org/10.1016/j.jmaa.2016.10.028