Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity

Ji Liu, Yifu Wang*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

16 Citations (Scopus)

Abstract

In this paper, we consider the following Keller–Segel(–Navier)–Stokes system{nt+u⋅∇n=Δn−∇⋅(nχ(c)∇c),x∈Ω, t>0,ct+u⋅∇c=Δc−c+n,x∈Ω, t>0,ut+κ(u⋅∇)u=Δu+∇P+n∇ϕ,x∈Ω, t>0,∇⋅u=0,x∈Ω, t>0, where Ω⊂RN (N=2,3) is a bounded domain with smooth boundary ∂Ω, κ∈R and χ(c) is assumed to generalize the prototypeχ(c)=χ0(1+μc)2, c≥0. It is proved that i) for κ≠0 and N=2 or κ=0 and N∈{2,3}, the corresponding initial–boundary problem admits a unique global classical solution which is bounded; ii) for κ≠0 and N=3, the corresponding initial–boundary problem possesses at least one global weak solution.

Original languageEnglish
Pages (from-to)499-528
Number of pages30
JournalJournal of Mathematical Analysis and Applications
Volume447
Issue number1
DOIs
Publication statusPublished - 1 Mar 2017

Keywords

  • Boundedness
  • Global existence
  • Keller–Segel
  • Navier–Stokes
  • Stokes

Fingerprint

Dive into the research topics of 'Global existence and boundedness in a Keller–Segel–(Navier–)Stokes system with signal-dependent sensitivity'. Together they form a unique fingerprint.

Cite this