Geometry of Limits of Zeros of Polynomial Sequences of Type (1,1)

D. G.L. Wang*, J. J.R. Zhang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 1
  • Captures
    • Readers: 2
see details

摘要

We study the root distribution of some univariate polynomials satisfying a recurrence of order two with linear polynomial coefficients. We show that the set of non-isolated limits of zeros of the polynomials is either an arc, or a circle, or an interval, or a “lollipop.” As an application, we discover a sufficient and necessary condition for the universal real-rootedness of the polynomials, subject to certain sign condition on the coefficients of the recurrence. Moreover, we obtain the sharp bound for all the zeros when they are real.

源语言英语
页(从-至)785-803
页数19
期刊Bulletin of the Malaysian Mathematical Sciences Society
44
2
DOI
出版状态已出版 - 3月 2021

指纹

探究 'Geometry of Limits of Zeros of Polynomial Sequences of Type (1,1)' 的科研主题。它们共同构成独一无二的指纹。

引用此

Wang, D. G. L., & Zhang, J. J. R. (2021). Geometry of Limits of Zeros of Polynomial Sequences of Type (1,1). Bulletin of the Malaysian Mathematical Sciences Society, 44(2), 785-803. https://doi.org/10.1007/s40840-020-00975-y