Falling Prediction and Recovery Control for a Humanoid Robot

Tianqi Yang, Weimin Zhang*, Zhangguo Yu, Libo Meng, Chenglong Fu, Qiang Huang

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

5 引用 (Scopus)
Plum Print visual indicator of research metrics
  • Citations
    • Citation Indexes: 6
  • Captures
    • Readers: 13
see details

摘要

It is very easy for biped robots to fall down. Some previous studies have been carried out to detect the fall state and protect the robot from damage. But it is not enough to detect a fall. It is very important for the biped robot to predict whether it will fall in the future based on the current state. In this paper, we consider a fall state predicted problem for bipedal robots. Based on the D 'Alembert principle, this method can predict the fall state at the moment the biped robot deviates from the normal state in every conditions such as standing and walking. It can give the robot more time to recover from the unstable state or protect itself from damage. And its stable control strategy matching the proposed method is also proposed to protect the robot from falling. The result is verified via simulations.

源语言英语
主期刊名2018 IEEE-RAS 18th International Conference on Humanoid Robots, Humanoids 2018
出版商IEEE Computer Society
1073-1079
页数7
ISBN(电子版)9781538672839
DOI
出版状态已出版 - 2 7月 2018
活动18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018 - Beijing, 中国
期限: 6 11月 20189 11月 2018

出版系列

姓名IEEE-RAS International Conference on Humanoid Robots
2018-November
ISSN(印刷版)2164-0572
ISSN(电子版)2164-0580

会议

会议18th IEEE-RAS International Conference on Humanoid Robots, Humanoids 2018
国家/地区中国
Beijing
时期6/11/189/11/18

指纹

探究 'Falling Prediction and Recovery Control for a Humanoid Robot' 的科研主题。它们共同构成独一无二的指纹。

引用此

Yang, T., Zhang, W., Yu, Z., Meng, L., Fu, C., & Huang, Q. (2018). Falling Prediction and Recovery Control for a Humanoid Robot. 在 2018 IEEE-RAS 18th International Conference on Humanoid Robots, Humanoids 2018 (页码 1073-1079). 文章 8625000 (IEEE-RAS International Conference on Humanoid Robots; 卷 2018-November). IEEE Computer Society. https://doi.org/10.1109/HUMANOIDS.2018.8625000