DAPPFC: Density-based affinity propagation for parameter free clustering

Hanning Yuan, Shuliang Wang*, Yang Yu, Ming Zhong

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

In the clustering algorithms, it is a bottleneck to identify clusters with arbitrarily. In this paper, a new method DAPPFC (density-based affinity propagation for parameter free clustering) is proposed. Firstly, it obtains a group of normalized density from the unsupervised clustering results. Then, the density is used for density clustering for multiple times. Finally, the multipledensity clustering results undergo a two-stage synthesis to achieve the final clustering result. The experiment shows that the proposed method does not require the user’s intervention, and it can also get an accurate clustering result in the presence of arbitrarily shaped clusters with a minimal additional computation cost.

源语言英语
主期刊名Advanced Data Mining and Applications - 12th International Conference, ADMA 2016, Proceedings
编辑Jianxin Li, Xue Li, Shuliang Wang, Jinyan Li, Quan Z. Sheng
出版商Springer Verlag
495-506
页数12
ISBN(印刷版)9783319495859
DOI
出版状态已出版 - 2016
活动12th International Conference on Advanced Data Mining and Applications, ADMA 2016 - Gold Coast, 澳大利亚
期限: 12 12月 201615 12月 2016

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
10086 LNAI
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议12th International Conference on Advanced Data Mining and Applications, ADMA 2016
国家/地区澳大利亚
Gold Coast
时期12/12/1615/12/16

指纹

探究 'DAPPFC: Density-based affinity propagation for parameter free clustering' 的科研主题。它们共同构成独一无二的指纹。

引用此