TY - GEN
T1 - Contrastive Graph Transformer Network for Personality Detection
AU - Zhu, Yangfu
AU - Hu, Linmei
AU - Ge, Xinkai
AU - Peng, Wanrong
AU - Wu, Bin
N1 - Publisher Copyright:
© 2022 International Joint Conferences on Artificial Intelligence. All rights reserved.
PY - 2022
Y1 - 2022
N2 - Personality detection is to identify the personality traits underlying social media posts. Most of the existing work is mainly devoted to learning the representations of posts based on labeled data. Yet the ground-truth personality traits are collected through time-consuming questionnaires. Thus, one of the biggest limitations lies in the lack of training data for this data-hungry task. In addition, the correlations among traits should be considered since they are important psychological cues that could help collectively identify the traits. In this paper, we construct a fully-connected post graph for each user and develop a novel Contrastive Graph Transformer Network model (CGTN) which distills potential labels of the graphs based on both labeled and unlabeled data. Specifically, our model first explores a self-supervised Graph Neural Network (GNN) to learn the post embeddings. We design two types of post graph augmentations to incorporate different priors based on psycholinguistic knowledge of Linguistic Inquiry and Word Count (LIWC) and post semantics. Then, upon the post embeddings of the graph, a Transformer-based decoder equipped with post-to-trait attention is exploited to generate traits sequentially. Experiments on two standard datasets demonstrate that our CGTN outperforms the state-of-the-art methods for personality detection.
AB - Personality detection is to identify the personality traits underlying social media posts. Most of the existing work is mainly devoted to learning the representations of posts based on labeled data. Yet the ground-truth personality traits are collected through time-consuming questionnaires. Thus, one of the biggest limitations lies in the lack of training data for this data-hungry task. In addition, the correlations among traits should be considered since they are important psychological cues that could help collectively identify the traits. In this paper, we construct a fully-connected post graph for each user and develop a novel Contrastive Graph Transformer Network model (CGTN) which distills potential labels of the graphs based on both labeled and unlabeled data. Specifically, our model first explores a self-supervised Graph Neural Network (GNN) to learn the post embeddings. We design two types of post graph augmentations to incorporate different priors based on psycholinguistic knowledge of Linguistic Inquiry and Word Count (LIWC) and post semantics. Then, upon the post embeddings of the graph, a Transformer-based decoder equipped with post-to-trait attention is exploited to generate traits sequentially. Experiments on two standard datasets demonstrate that our CGTN outperforms the state-of-the-art methods for personality detection.
UR - http://www.scopus.com/inward/record.url?scp=85137888092&partnerID=8YFLogxK
U2 - 10.24963/ijcai.2022/633
DO - 10.24963/ijcai.2022/633
M3 - Conference contribution
AN - SCOPUS:85137888092
T3 - IJCAI International Joint Conference on Artificial Intelligence
SP - 4559
EP - 4565
BT - Proceedings of the 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
A2 - De Raedt, Luc
A2 - De Raedt, Luc
PB - International Joint Conferences on Artificial Intelligence
T2 - 31st International Joint Conference on Artificial Intelligence, IJCAI 2022
Y2 - 23 July 2022 through 29 July 2022
ER -