Constructing sparse KFDA using pre-image reconstruction

Qing Zhang, Jianwu Li*

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Kernel Fisher Discriminant Analysis (KFDA) improves greatly the classification accuracy of FDA via using kernel trick. However, the final solution of KFDA is expressed as an expansion of all training examples, which seriously undermines the classification efficiency, especially in real-time applications. This paper proposes a novel framework to construct sparse KFDA using pre-image reconstruction. The proposed method (PR-KFDA) appends greedily the pre-image of the residual between the current approximate model and the original KFDA model in feature space with the local optimal Fisher coefficients to acquire sparse representation of KFDA solution. Experimental results show that PR-KFDA can reduce the solution of KFDA effectively while maintaining comparable test accuracy.

源语言英语
主期刊名Neural Information Processing
主期刊副标题Models and Applications - 17th International Conference, ICONIP 2010, Proceedings
658-667
页数10
版本PART 2
DOI
出版状态已出版 - 2010
活动17th International Conference on Neural Information Processing, ICONIP 2010 - Sydney, NSW, 澳大利亚
期限: 22 11月 201025 11月 2010

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
编号PART 2
6444 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议17th International Conference on Neural Information Processing, ICONIP 2010
国家/地区澳大利亚
Sydney, NSW
时期22/11/1025/11/10

指纹

探究 'Constructing sparse KFDA using pre-image reconstruction' 的科研主题。它们共同构成独一无二的指纹。

引用此