Action recognition using context and appearance distribution features

Xinxiao Wu*, Dong Xu, Lixin Duan, Jiebo Luo

*此作品的通讯作者

科研成果: 书/报告/会议事项章节会议稿件同行评审

207 引用 (Scopus)

摘要

We first propose a new spatio-temporal context distribution feature of interest points for human action recognition. Each action video is expressed as a set of relative XYT coordinates between pairwise interest points in a local region. We learn a global GMM (referred to as Universal Background Model, UBM) using the relative coordinate features from all the training videos, and then represent each video as the normalized parameters of a video-specific GMM adapted from the global GMM. In order to capture the spatio-temporal relationships at different levels, multiple GMMs are utilized to describe the context distributions of interest points over multi-scale local regions. To describe the appearance information of an action video, we also propose to use GMM to characterize the distribution of local appearance features from the cuboids centered around the interest points. Accordingly, an action video can be represented by two types of distribution features: 1) multiple GMM distributions of spatio-temporal context; 2) GMM distribution of local video appearance. To effectively fuse these two types of heterogeneous and complementary distribution features, we additionally propose a new learning algorithm, called Multiple Kernel Learning with Augmented Features (AFMKL), to learn an adapted classifier based on multiple kernels and the pre-learned classifiers of other action classes. Extensive experiments on KTH, multi-view IXMAS and complex UCF sports datasets demonstrate that our method generally achieves higher recognition accuracy than other state-of-the-art methods.

源语言英语
主期刊名2011 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011
出版商IEEE Computer Society
489-496
页数8
ISBN(印刷版)9781457703942
DOI
出版状态已出版 - 2011
已对外发布

出版系列

姓名Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN(印刷版)1063-6919

指纹

探究 'Action recognition using context and appearance distribution features' 的科研主题。它们共同构成独一无二的指纹。

引用此