A system for TRecViD med by MCIS

Yang Feng, Wanchen Sui, Xinxiao Wu

科研成果: 会议稿件论文同行评审

摘要

We designed a simple system for the 2014 TRECVID Multimedia Event Detection [1]. Except the videos provided by NIST, we only used the BVLC Reference CaffeNet model file distributed besides Caffe [2]. Our system follows the standard pipeline and consists two parts: feature extraction and classification. The feature extraction part is implemented by Caffe and the classification is implemented by LIBSVM [3]. Based on the results, we think that the contribution mainly comes from the feature extraction part. We learned that Convolutional Neural Networks (CNN) is a powerfully model and hope that a easy accessible spatio-temporal CNN model for videos will be available soon.

源语言英语
出版状态已出版 - 2020
活动2014 TREC Video Retrieval Evaluation, TRECVID 2014 - Orlando, 美国
期限: 10 11月 201412 11月 2014

会议

会议2014 TREC Video Retrieval Evaluation, TRECVID 2014
国家/地区美国
Orlando
时期10/11/1412/11/14

指纹

探究 'A system for TRecViD med by MCIS' 的科研主题。它们共同构成独一无二的指纹。

引用此

Feng, Y., Sui, W., & Wu, X. (2020). A system for TRecViD med by MCIS. 论文发表于 2014 TREC Video Retrieval Evaluation, TRECVID 2014, Orlando, 美国.