摘要
We designed a simple system for the 2014 TRECVID Multimedia Event Detection [1]. Except the videos provided by NIST, we only used the BVLC Reference CaffeNet model file distributed besides Caffe [2]. Our system follows the standard pipeline and consists two parts: feature extraction and classification. The feature extraction part is implemented by Caffe and the classification is implemented by LIBSVM [3]. Based on the results, we think that the contribution mainly comes from the feature extraction part. We learned that Convolutional Neural Networks (CNN) is a powerfully model and hope that a easy accessible spatio-temporal CNN model for videos will be available soon.
源语言 | 英语 |
---|---|
出版状态 | 已出版 - 2020 |
活动 | 2014 TREC Video Retrieval Evaluation, TRECVID 2014 - Orlando, 美国 期限: 10 11月 2014 → 12 11月 2014 |
会议
会议 | 2014 TREC Video Retrieval Evaluation, TRECVID 2014 |
---|---|
国家/地区 | 美国 |
市 | Orlando |
时期 | 10/11/14 → 12/11/14 |
指纹
探究 'A system for TRecViD med by MCIS' 的科研主题。它们共同构成独一无二的指纹。引用此
Feng, Y., Sui, W., & Wu, X. (2020). A system for TRecViD med by MCIS. 论文发表于 2014 TREC Video Retrieval Evaluation, TRECVID 2014, Orlando, 美国.