摘要
This paper proposes a shallow convolutional neural network (CNN) model to improve the efficiency and accuracy of real-time human activity recognition (HAR). In the traditional convolutional network, an Mix-Patch-Layer (MPL) block based on the attention mechanism is added to enhance the expressiveness of the network extracted features. This block makes the features in the network focus on the information between different parts of itself, which makes up for the loss of global information in temporal data features. Experiments show that the block can improve real-time human recognition accuracy and efficiency with a shallow network.
源语言 | 英语 |
---|---|
主期刊名 | Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 |
编辑 | Donald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu |
出版商 | Institute of Electrical and Electronics Engineers Inc. |
页 | 2482-2489 |
页数 | 8 |
ISBN(电子版) | 9781665468190 |
DOI | |
出版状态 | 已出版 - 2022 |
活动 | 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, 美国 期限: 6 12月 2022 → 8 12月 2022 |
出版系列
姓名 | Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 |
---|
会议
会议 | 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 |
---|---|
国家/地区 | 美国 |
市 | Las Vegas |
时期 | 6/12/22 → 8/12/22 |
指纹
探究 'A rehabilitation activity monitoring method based on Shallow-CNN' 的科研主题。它们共同构成独一无二的指纹。引用此
Wu, S., Huang, T., & Li, Y. (2022). A rehabilitation activity monitoring method based on Shallow-CNN. 在 D. Adjeroh, Q. Long, X. Shi, F. Guo, X. Hu, S. Aluru, G. Narasimhan, J. Wang, M. Kang, A. M. Mondal, & J. Liu (编辑), Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 (页码 2482-2489). (Proceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/BIBM55620.2022.9995387