A rehabilitation activity monitoring method based on Shallow-CNN

Sisi Wu, Tianyu Huang*, Yihao Li

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Citation (Scopus)

Abstract

This paper proposes a shallow convolutional neural network (CNN) model to improve the efficiency and accuracy of real-time human activity recognition (HAR). In the traditional convolutional network, an Mix-Patch-Layer (MPL) block based on the attention mechanism is added to enhance the expressiveness of the network extracted features. This block makes the features in the network focus on the information between different parts of itself, which makes up for the loss of global information in temporal data features. Experiments show that the block can improve real-time human recognition accuracy and efficiency with a shallow network.

Original languageEnglish
Title of host publicationProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
EditorsDonald Adjeroh, Qi Long, Xinghua Shi, Fei Guo, Xiaohua Hu, Srinivas Aluru, Giri Narasimhan, Jianxin Wang, Mingon Kang, Ananda M. Mondal, Jin Liu
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages2482-2489
Number of pages8
ISBN (Electronic)9781665468190
DOIs
Publication statusPublished - 2022
Event2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022 - Las Vegas, United States
Duration: 6 Dec 20228 Dec 2022

Publication series

NameProceedings - 2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022

Conference

Conference2022 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2022
Country/TerritoryUnited States
CityLas Vegas
Period6/12/228/12/22

Keywords

  • HAR
  • attention
  • deep learning
  • real-time
  • wearable sensor

Fingerprint

Dive into the research topics of 'A rehabilitation activity monitoring method based on Shallow-CNN'. Together they form a unique fingerprint.

Cite this