A Möbius scalar curvature rigidity on compact conformally flat hypersurfaces in Sn+1

Limiao Lin, Tongzhu Li*, Changping Wang

*此作品的通讯作者

科研成果: 期刊稿件文章同行评审

1 引用 (Scopus)

摘要

Let x:Mn→Sn+1 be an immersed hypersurface without umbilical point, one can define the Möbius metric g on x which is invariant under the Möbius transformation group of Sn+1. The scalar curvature R with respect to g is called the Möbius scalar curvature. In this paper, we study conformally flat hypersurfaces with constant Möbius scalar curvature in Sn+1. First, we classify locally the conformally flat hypersurfaces of dimension n(≥4) with constant Möbius scalar curvature under the Möbius transformation group of Sn+1. Second, we prove that if an umbilic-free conformally flat hypersurface of dimension n(≥4) with constant Möbius scalar curvature R is compact, then R=(n−1)(n−2)r2,0<r<1, and the compact conformally flat hypersurface is Möbius equivalent to the torus S1(1−r2)×Sn−1(r)↪Sn+1.

源语言英语
页(从-至)762-775
页数14
期刊Journal of Mathematical Analysis and Applications
466
1
DOI
出版状态已出版 - 1 10月 2018

指纹

探究 'A Möbius scalar curvature rigidity on compact conformally flat hypersurfaces in Sn+1' 的科研主题。它们共同构成独一无二的指纹。

引用此