User-based network embedding for opinion spammer detection

Ziyang Wang, Wei Wei*, Xian Ling Mao, Guibing Guo, Pan Zhou, Sheng Jiang

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

11 Citations (Scopus)

Abstract

Due to the huge commercial interests behind online reviews, a tremendous amount of spammers manufacture spam reviews for product reputation manipulation. To further enhance the influence of spam reviews, spammers often collaboratively post spam reviews within a short period of time, the activities of whom are called collective opinion spam campaign. The goals and members of the spam campaign activities change frequently, and some spammers also imitate normal purchases to conceal the identity, which makes the spammer detection challenging. In this paper, we propose an unsupervised network embedding-based approach to jointly exploiting different types of relations, e.g., direct common behavior relation, and indirect co-reviewed relation to effectively represent the relevances of users for detecting the collective opinion spammers. The average improvements of our method over the state-of-the-art solutions on dataset AmazonCn and YelpHotel are [14.09%,12.04%] and [16.25%,12.78%] in terms of AP and AUC, respectively.

Original languageEnglish
Article number108512
JournalPattern Recognition
Volume125
DOIs
Publication statusPublished - May 2022

Keywords

  • Collective spammer
  • Network embedding
  • Signed network
  • Spam detection

Fingerprint

Dive into the research topics of 'User-based network embedding for opinion spammer detection'. Together they form a unique fingerprint.

Cite this