U-shape Transformer for Underwater Image Enhancement

Lintao Peng, Chunli Zhu, Liheng Bian*

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

34 Citations (Scopus)

Abstract

The light absorption and scattering of underwater impurities lead to poor underwater imaging quality. The existing data-driven based underwater image enhancement (UIE) techniques suffer from the lack of a large-scale dataset containing various underwater scenes and high-fidelity reference images. Besides, the inconsistent attenuation in different color channels and space areas is not fully considered for boosted enhancement. In this work, we constructed a large-scale underwater image (LSUI) dataset including 4279 image pairs, and reported an U-shape Transformer network where the transformer model is for the first time introduced to the UIE task. The U-shape Transformer is integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT) module and a spatial-wise global feature modeling transformer (SGFMT) module specially designed for UIE task, which reinforce the network’s attention to the color channels and space areas with more serious attenuation. Meanwhile, in order to further improve the contrast and saturation, a novel loss function combining RGB, LAB and LCH color spaces is designed following the human vision principle. The extensive experiments on available datasets validate the state-of-the-art performance of the reported technique with more than 2dB superiority. The dataset and demo code are available on https://bianlab.github.io/codes.html.

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2022 Workshops, Proceedings
EditorsLeonid Karlinsky, Tomer Michaeli, Ko Nishino
PublisherSpringer Science and Business Media Deutschland GmbH
Pages290-307
Number of pages18
ISBN (Print)9783031250620
DOIs
Publication statusPublished - 2023
Event17th European Conference on Computer Vision, ECCV 2022 - Tel Aviv, Israel
Duration: 23 Oct 202227 Oct 2022

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13802 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference17th European Conference on Computer Vision, ECCV 2022
Country/TerritoryIsrael
CityTel Aviv
Period23/10/2227/10/22

Keywords

  • Multi-color space loss function
  • Transformer
  • Underwater image dataset
  • Underwater image enhancement

Fingerprint

Dive into the research topics of 'U-shape Transformer for Underwater Image Enhancement'. Together they form a unique fingerprint.

Cite this