TY - GEN
T1 - U-shape Transformer for Underwater Image Enhancement
AU - Peng, Lintao
AU - Zhu, Chunli
AU - Bian, Liheng
N1 - Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
PY - 2023
Y1 - 2023
N2 - The light absorption and scattering of underwater impurities lead to poor underwater imaging quality. The existing data-driven based underwater image enhancement (UIE) techniques suffer from the lack of a large-scale dataset containing various underwater scenes and high-fidelity reference images. Besides, the inconsistent attenuation in different color channels and space areas is not fully considered for boosted enhancement. In this work, we constructed a large-scale underwater image (LSUI) dataset including 4279 image pairs, and reported an U-shape Transformer network where the transformer model is for the first time introduced to the UIE task. The U-shape Transformer is integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT) module and a spatial-wise global feature modeling transformer (SGFMT) module specially designed for UIE task, which reinforce the network’s attention to the color channels and space areas with more serious attenuation. Meanwhile, in order to further improve the contrast and saturation, a novel loss function combining RGB, LAB and LCH color spaces is designed following the human vision principle. The extensive experiments on available datasets validate the state-of-the-art performance of the reported technique with more than 2dB superiority. The dataset and demo code are available on https://bianlab.github.io/codes.html.
AB - The light absorption and scattering of underwater impurities lead to poor underwater imaging quality. The existing data-driven based underwater image enhancement (UIE) techniques suffer from the lack of a large-scale dataset containing various underwater scenes and high-fidelity reference images. Besides, the inconsistent attenuation in different color channels and space areas is not fully considered for boosted enhancement. In this work, we constructed a large-scale underwater image (LSUI) dataset including 4279 image pairs, and reported an U-shape Transformer network where the transformer model is for the first time introduced to the UIE task. The U-shape Transformer is integrated with a channel-wise multi-scale feature fusion transformer (CMSFFT) module and a spatial-wise global feature modeling transformer (SGFMT) module specially designed for UIE task, which reinforce the network’s attention to the color channels and space areas with more serious attenuation. Meanwhile, in order to further improve the contrast and saturation, a novel loss function combining RGB, LAB and LCH color spaces is designed following the human vision principle. The extensive experiments on available datasets validate the state-of-the-art performance of the reported technique with more than 2dB superiority. The dataset and demo code are available on https://bianlab.github.io/codes.html.
KW - Multi-color space loss function
KW - Transformer
KW - Underwater image dataset
KW - Underwater image enhancement
UR - http://www.scopus.com/inward/record.url?scp=85151060702&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-25063-7_18
DO - 10.1007/978-3-031-25063-7_18
M3 - Conference contribution
AN - SCOPUS:85151060702
SN - 9783031250620
T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
SP - 290
EP - 307
BT - Computer Vision – ECCV 2022 Workshops, Proceedings
A2 - Karlinsky, Leonid
A2 - Michaeli, Tomer
A2 - Nishino, Ko
PB - Springer Science and Business Media Deutschland GmbH
T2 - 17th European Conference on Computer Vision, ECCV 2022
Y2 - 23 October 2022 through 27 October 2022
ER -