Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance

Ting Liu, Xiaoyan Liu, Nigel Graham, Wenzheng Yu, Kening Sun*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

250 Citations (Scopus)

Abstract

The limitations of instability and low permeability of graphene oxide (GO) membranes in aqueous applications, such as water treatment, represent significant obstacles to their wider application. In this paper, we describe the development and testing of a novel composite membrane based on GO and MXene. The unique heterogeneous structure of the GO/MXene membrane demonstrated a synergistic effect, in terms of substrate rejection and permeability, which varied according to the relative proportions of GO and MXene. Due to its advantageous two-dimensional (2D) interlayer channels and hydrophilicity, a composite membrane (~550 nm) with a GO/MXene mass ratio of 1/4 exhibited much greater water flux (71.9 L m−2 h−1.bar−1) compared to a reference GO membrane (6.5 L m−2 h−1.bar−1) under the same experimental conditions. Moreover, the composite membrane showed excellent stability in water over one month. The rejection of common small molecule organic dyes (NR, MB, CV, BB) was found to exceed 99.5%, and similar excellent removal efficiencies were found for two representative types of natural organic matter in raw waters (HA and BSA). The superior water flux of the GO/MXene composite membrane compared to the reference GO membrane was mainly attributed to the moderate increase of interlayer spacing of the membrane and the decrease of oxygen-containing functional groups.

Original languageEnglish
Article number117431
JournalJournal of Membrane Science
Volume593
DOIs
Publication statusPublished - 1 Jan 2020

Keywords

  • 2D materials
  • Composite membrane
  • Graphene oxide
  • MXene
  • Water purification

Fingerprint

Dive into the research topics of 'Two-dimensional MXene incorporated graphene oxide composite membrane with enhanced water purification performance'. Together they form a unique fingerprint.

Cite this