Transferring Cross-Corpus Knowledge: An Investigation on Data Augmentation for Heart Sound Classification

Tomoya Koike, Kun Qian*, Bjorn W. Schuller, Yoshiharu Yamamoto

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

6 Citations (Scopus)

Abstract

Human auscultation has been regarded as a cheap, convenient and efficient method for the diagnosis of cardiovascular diseases. Nevertheless, training professional auscultation skills needs tremendous efforts and is time-consuming. Computer audition (CA) that leverages the power of advanced machine learning and signal processing technologies has increasingly attracted contributions to the field of automatic heart sound classification. While previous studies have shown promising results in CA based heart sound classification with the 'shuffle split' method, machine learning for heart sound classification decreases in accuracy with a cross-corpus test dataset. We investigate this problem with a cross-corpus evaluation using the PhysioNet CinC Challenge 2016 Dataset and propose a new combination of data augmentation techniques that leads to a CNN robust for such cross-corpus evaluation. Compared with the baseline, which is given without augmentation, our data augmentation techniques combined improve by 20.0 % the sensitivity and by 7.9 % the specificity on average across 6 databases, which is a significant difference on 4 out of these (p <.05 by one-tailed z-test).

Original languageEnglish
Title of host publication43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1976-1979
Number of pages4
ISBN (Electronic)9781728111797
DOIs
Publication statusPublished - 2021
Event43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021 - Virtual, Online, Mexico
Duration: 1 Nov 20215 Nov 2021

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2021
Country/TerritoryMexico
CityVirtual, Online
Period1/11/215/11/21

Fingerprint

Dive into the research topics of 'Transferring Cross-Corpus Knowledge: An Investigation on Data Augmentation for Heart Sound Classification'. Together they form a unique fingerprint.

Cite this