Teaching Machines to Know Your Depressive State: On Physical Activity in Health and Major Depressive Disorder

Kun Qian, Hiroyuki Kuromiya, Zixing Zhang, Jinhyuk Kim, Toru Nakamura, Kazuhiro Yoshiuchi, Bjorn W. Schuller, Yoshiharu Yamamoto

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

7 Citations (Scopus)

Abstract

A less-invasive method for the diagnosis of the major depressive disorder can be useful for both the psychiatrists and the patients. We propose a machine learning framework for automatically discriminating patients suffering from the major depressive disorder (n = 14) and healthy subjects (n = 17). To this end, spontaneous physical activity data were recorded via a watch-type computer device equipped by the participants in their daily lives. Two machine learning models are investigated and compared, i. e., support vector machines, and deep recurrent neural networks. Experimental results show that, both of the two methods, i. e., the static model fed with human hand-crafted features, and the sequential model fed with raw data can reach a promising performance with an unweighted average recall at 76.0 % and 56.3 %, respectively.

Original languageEnglish
Title of host publication2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3592-3595
Number of pages4
ISBN (Electronic)9781538613115
DOIs
Publication statusPublished - Jul 2019
Externally publishedYes
Event41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany
Duration: 23 Jul 201927 Jul 2019

Publication series

NameProceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS
ISSN (Print)1557-170X

Conference

Conference41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019
Country/TerritoryGermany
CityBerlin
Period23/07/1927/07/19

Fingerprint

Dive into the research topics of 'Teaching Machines to Know Your Depressive State: On Physical Activity in Health and Major Depressive Disorder'. Together they form a unique fingerprint.

Cite this