TY - JOUR
T1 - SiMix
T2 - A domain generalization method for cross-site brain MRI harmonization via site mixing
AU - Xu, Chundan
AU - Li, Jie
AU - Wang, Yakui
AU - Wang, Lixue
AU - Wang, Yizhe
AU - Zhang, Xiaofeng
AU - Liu, Weiqi
AU - Chen, Jingang
AU - Vatian, Aleksandra
AU - Gusarova, Natalia
AU - Ye, Chuyang
AU - Zheng, Zhuozhao
N1 - Publisher Copyright:
© 2024 The Author(s)
PY - 2024/10/1
Y1 - 2024/10/1
N2 - Brain magnetic resonance imaging (MRI) is widely used in clinical practice for disease diagnosis. However, MRI scans acquired at different sites can have different appearances due to the difference in the hardware, pulse sequence, and imaging parameter. It is important to reduce or eliminate such cross-site variations with brain MRI harmonization so that downstream image processing and analysis is performed consistently. Previous works on the harmonization problem require the data acquired from the sites of interest for model training. But in real-world scenarios there can be test data from a new site of interest after the model is trained, and training data from the new site is unavailable when the model is trained. In this case, previous methods cannot optimally handle the test data from the new unseen site. To address the problem, in this work we explore domain generalization for brain MRI harmonization and propose Site Mix (SiMix). We assume that images of travelling subjects are acquired at a few existing sites for model training. To allow the training data to better represent the test data from unseen sites, we first propose to mix the training images belonging to different sites stochastically, which substantially increases the diversity of the training data while preserving the authenticity of the mixed training images. Second, at test time, when a test image from an unseen site is given, we propose a multiview strategy that perturbs the test image with preserved authenticity and ensembles the harmonization results of the perturbed images for improved harmonization quality. To validate SiMix, we performed experiments on the publicly available SRPBS dataset and MUSHAC dataset that comprised brain MRI acquired at nine and two different sites, respectively. The results indicate that SiMix improves brain MRI harmonization for unseen sites, and it is also beneficial to the harmonization of existing sites.
AB - Brain magnetic resonance imaging (MRI) is widely used in clinical practice for disease diagnosis. However, MRI scans acquired at different sites can have different appearances due to the difference in the hardware, pulse sequence, and imaging parameter. It is important to reduce or eliminate such cross-site variations with brain MRI harmonization so that downstream image processing and analysis is performed consistently. Previous works on the harmonization problem require the data acquired from the sites of interest for model training. But in real-world scenarios there can be test data from a new site of interest after the model is trained, and training data from the new site is unavailable when the model is trained. In this case, previous methods cannot optimally handle the test data from the new unseen site. To address the problem, in this work we explore domain generalization for brain MRI harmonization and propose Site Mix (SiMix). We assume that images of travelling subjects are acquired at a few existing sites for model training. To allow the training data to better represent the test data from unseen sites, we first propose to mix the training images belonging to different sites stochastically, which substantially increases the diversity of the training data while preserving the authenticity of the mixed training images. Second, at test time, when a test image from an unseen site is given, we propose a multiview strategy that perturbs the test image with preserved authenticity and ensembles the harmonization results of the perturbed images for improved harmonization quality. To validate SiMix, we performed experiments on the publicly available SRPBS dataset and MUSHAC dataset that comprised brain MRI acquired at nine and two different sites, respectively. The results indicate that SiMix improves brain MRI harmonization for unseen sites, and it is also beneficial to the harmonization of existing sites.
KW - Brain MRI
KW - Domain generalization
KW - Image harmonization
UR - http://www.scopus.com/inward/record.url?scp=85202476387&partnerID=8YFLogxK
U2 - 10.1016/j.neuroimage.2024.120812
DO - 10.1016/j.neuroimage.2024.120812
M3 - Article
AN - SCOPUS:85202476387
SN - 1053-8119
VL - 299
JO - NeuroImage
JF - NeuroImage
M1 - 120812
ER -