SiMix: A domain generalization method for cross-site brain MRI harmonization via site mixing

Chundan Xu, Jie Li, Yakui Wang, Lixue Wang, Yizhe Wang, Xiaofeng Zhang, Weiqi Liu, Jingang Chen, Aleksandra Vatian, Natalia Gusarova, Chuyang Ye*, Zhuozhao Zheng

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

Brain magnetic resonance imaging (MRI) is widely used in clinical practice for disease diagnosis. However, MRI scans acquired at different sites can have different appearances due to the difference in the hardware, pulse sequence, and imaging parameter. It is important to reduce or eliminate such cross-site variations with brain MRI harmonization so that downstream image processing and analysis is performed consistently. Previous works on the harmonization problem require the data acquired from the sites of interest for model training. But in real-world scenarios there can be test data from a new site of interest after the model is trained, and training data from the new site is unavailable when the model is trained. In this case, previous methods cannot optimally handle the test data from the new unseen site. To address the problem, in this work we explore domain generalization for brain MRI harmonization and propose Site Mix (SiMix). We assume that images of travelling subjects are acquired at a few existing sites for model training. To allow the training data to better represent the test data from unseen sites, we first propose to mix the training images belonging to different sites stochastically, which substantially increases the diversity of the training data while preserving the authenticity of the mixed training images. Second, at test time, when a test image from an unseen site is given, we propose a multiview strategy that perturbs the test image with preserved authenticity and ensembles the harmonization results of the perturbed images for improved harmonization quality. To validate SiMix, we performed experiments on the publicly available SRPBS dataset and MUSHAC dataset that comprised brain MRI acquired at nine and two different sites, respectively. The results indicate that SiMix improves brain MRI harmonization for unseen sites, and it is also beneficial to the harmonization of existing sites.

Original languageEnglish
Article number120812
JournalNeuroImage
Volume299
DOIs
Publication statusPublished - 1 Oct 2024

Keywords

  • Brain MRI
  • Domain generalization
  • Image harmonization

Fingerprint

Dive into the research topics of 'SiMix: A domain generalization method for cross-site brain MRI harmonization via site mixing'. Together they form a unique fingerprint.

Cite this