Scalable gromov-wasserstein learning for graph partitioning and matching

Hongteng Xu, Dixin Luo, Lawrence Carin

Research output: Contribution to journalConference articlepeer-review

115 Citations (Scopus)

Abstract

We propose a scalable Gromov-Wasserstein learning (S-GWL) method and establish a novel and theoretically-supported paradigm for large-scale graph analysis. The proposed method is based on the fact that Gromov-Wasserstein discrepancy is a pseudometric on graphs. Given two graphs, the optimal transport associated with their Gromov-Wasserstein discrepancy provides the correspondence between their nodes and achieves graph matching. When one of the graphs has isolated but self-connected nodes (i.e., a disconnected graph), the optimal transport indicates the clustering structure of the other graph and achieves graph partitioning. Using this concept, we extend our method to multi-graph partitioning and matching by learning a Gromov-Wasserstein barycenter graph for multiple observed graphs; the barycenter graph plays the role of the disconnected graph, and since it is learned, so is the clustering. Our method combines a recursive K-partition mechanism with a regularized proximal gradient algorithm, whose time complexity is O(K(E + V ) logK V ) for graphs with V nodes and E edges. To our knowledge, our method is the first attempt to make Gromov-Wasserstein discrepancy applicable to large-scale graph analysis and unify graph partitioning and matching into the same framework. It outperforms state-of-the-art graph partitioning and matching methods, achieving a trade-off between accuracy and efficiency.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume32
Publication statusPublished - 2019
Externally publishedYes
Event33rd Annual Conference on Neural Information Processing Systems, NeurIPS 2019 - Vancouver, Canada
Duration: 8 Dec 201914 Dec 2019

Fingerprint

Dive into the research topics of 'Scalable gromov-wasserstein learning for graph partitioning and matching'. Together they form a unique fingerprint.

Cite this